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Course Requirements 

n  Prerequisites 
¨  Knowledge of a programming language 
¨  A statistics course. 

n  Requirements 
¨  3 Short Homework Assignments 
¨  5 Paper Responses 
¨  Midterm Exam – April 23rd 
¨  Final Exam – June 9th  
¨  Final Project 
¨  Extra problems and bigger project for graduate students. 

n  Grading Basis 
¨  Homeworks 20%.   Paper Responses 10%. 
¨  Midterm Exam 20%.  Final Project 30%. 
¨  Final Exam 20%.  



Computational Genetics – Part I 
n  March 31st -  Introduction to Computational Genetics + Background in Statistics 
n  April 2nd  -  Disease Genetics and Association Analysis + Association Examples 
n  April 4th   -  NO DISCUSSION 
n  April 7th   -  Indirect Association + Measuring Statistical Power + The HapMap 
n  April 9th  -  Multiple Testing Correction + Association Study Design 
n  April 11th   -  Introduction to R Statistical Programming (Discussion) 
n  April 14st  -  Multi-Variate Normal Distribution for Association Statistics 
n  April 16th   -  Meta-Analysis + Imputation + Rare Variants  
n  April 18th  -  Association Studies Review (Discussion) 
n  April 21st  -  Midterm Review 
n  April 23rd  -  MIDTERM 
n  April 25th   -  Sequencing Software and Analysis Tools (Discussion) 
n  April 28th   -  Sequencing + Read Mapping + Burroughs Wheeler Transform 
n  April 30th   -  Sequencing Coverage + Sequence SNP Identification  
n  May 2nd  -  Sequencing Software and Analysis Tools (Discussion) 



Computational Genetics – Part II 
n  May 5th  -  Sequence Assembly   
n  May 7th  -  Copy Number Variation + Structural Variation  
n  May 9th  -  Final Project Presentations (Discussion) 
n  May 12th  -  RNA Sequencing + Meta-Genomics 
n  May 14th  -  Population Structure + Mixed Models (Advanced Topic) 
n  May 16th  -  Final Project Presentations (Discussion) 
n  May 19th  -   Mouse Genetics (Advanced Topic) 
n  May 21st  -  Identity-by-Descent Inference + Pedigree Inference  
n  May 23rd   -  Final Project Presentations (Discussion)  
n  May 26th  -  HOLIDAY  
n  May 28th  -  Final Project Presentations 
n  May 30th  -  Final Project Presentations (Discussion) 
n  June 2nd  -  Final Project Presentations 
n  June 4th  -  Final Project Presentations 
n  June 6th  -  Final Exam Review (Discussion) 
n  June 9th  -  Final Exam (Non-cumulative) – Monday 8:00am-11:00am 



Course Goal:  
Training in Interdisciplinary 
Computational Research 
 n  Reading papers outside Computer Science 

with no background. 
n  Identifying Computational Problems or ways 

we can contribute. 
n  Formalizing/abstracting computational 

problems. 

n  Open ended Final Project. 



Final Projects 

n  An interdisciplinary Computational Research 
Project 
¨  Important Biological Problem 
¨  Formalize a Computational Problem 

n  Identify Objective Function/Benchmark 
n  Identify Competing/Baseline Solutions 

¨  IDEA! 
n  Better solution to computational problem. 

¨  Evaluate solution compared to benchmarks 
¨  Identify Implications 

n  Many problems to choose from. 
n  Different difficulty levels for grads/undergrads 



Final Projects 

n  15+ available projects in Association Studies 
n  15+ available project in Sequencing 
n  Need to decide on a project by April 11th. 



Final Projects 

n  4 levels of difficulty 
¨  Easy 
¨  Medium 
¨  Hard 
¨  Very Hard 

n  Undergrads can do an easy project. 
n  Grads must do a medium or harder project. 
n  Harder projects get more extra credit and 

later presentation dates. 
n  No group projects. 



Paper Reading Responses 

n  CourseWeb Discussion Forum 
n  Mandatory Participation 
n  1 Question due on Monday 
n  2 Responses due on Wednesday 

n  This week, both videos (Eric Lander and 
NOVA). 
¨  Post questions by Wednesday and responses due on 

Friday. 



Eric Lander Video 

n  Secrets of the Human Genome 
n  http://hulk03.princeton.edu:8080/WebMedia/

flash/lectures/
20100419_publect_lander.shtml 

n  Better version on iTunes. 



NOVA  
“Cracking your Genetic Code” 

n  NOVA from March 2012 
n  http://www.pbs.org/wgbh/nova/body/cracking-

your-genetic-code.html  



Genomics Options for CS Majors 

•  Sci-Tech Electives for CS Majors 
–  Lower Division Courses in Chemistry and Biology which are Prereqs for 

Upper Division Biology Courses. 
–  No other way to take biology courses! 

•  Technical Breadth Area in Genomics 
–  Mostly upper division courses in “genomics” area 
–  Taught by faculty in the Bioinformatics program 
–  Many good options and prereqs satisfied by Sci-Tech electives option. 



Biology and Chemistry Prereqs 

n  Main required sequence is Life Sciences 2, 3, and 
4. 

n  These courses also require Chemistry 20A, 20B, 
30A and Mathematics 31A. 

n  Life Sciences 2 and Chemistry 20A can be taken 
as Engineering + GE requirements. 

n  Mathematics 31A taken by our students. 



Sci-Tech Electives (within CS Major) 

1.  Life Sciences 3 - Introduction to Molecular 
Biology    

 (prereq Life Sciences 2, Chem 30A) 

2.  Chem 20B - Chemical Energetics and Change   
 (prereq Chem 20A, Math 31A) 

3.  Chem 30A - Organic Chemistry I: Structure and 
Reactivity   

 (prereq Chem 20B) 



Technical Breadth Area in Genomics 

•  Life Sciences 4 - Genetics   
–  (prereq Life Sciences 2,3, Chemistry 20A, 30A) 

•  Molecular Cellular and Developmental Biology 144 - 
Molecular Biology   
–  (prereq Life Sciences 3,4) 

•  Human Genetics 144 - Genomic Technologies 
•  Ecology and Evolution 135 – Population Genetics  

–  (prereq Life Sciences 4) 
•  Molecular Cellular and Developmental Biology 172 - 

Genomics and Bioinformatics   
–  (prereq Molecular Cellular and Developmental Biology 144) 

•  Physiological Sciences 125 - Molecular Systems Biology   
–  (prereq Life Sciences 2,3,4) 

3	
  Courses	
  from	
  this	
  list:	
  



Bioinformatics Minor 

n  Bioinformatics is an important interdisciplinary research 
area with tremendous graduate training and industry 
opportunities. 

n  Strong group of faculty engaged in active research at 
UCLA 

n  Numerous existing course offerings available at UCLA. 

n  Minor organizes available courses into a coherent 
undergraduate academic program. 
¨ Graduating students will be positioned to apply to 

graduate programs in Bioinformatics. 
¨ Graduating students will be positioned to enter 

biotechnology industry. 



Bioinformatics Minor Structure 

n  8 course minor (5 upper division, 3 lower division) 
n  Computational Biology Seminar Course 

1.  “Introduction to Computational Systems Biology” 
n  CS 184 taught by Joe Distefano (lectures by many Bioinformatics faculty) 

n  Core bioinformatics courses 
2.  “Introduction to Bioinformatics”  

n  Chem 160A, CS 121 taught by Chris Lee 
3.  “Computational Genetics” 

n  CS 124, Human Genetics 124 taught by Eleazar Eskin 

n  Additional required algorithms course 
n  CS 180 or Math 182 

n  Remaining upper division course is an electives 

n  Additional lower division courses are prerequisites 
n  Minimum of 20 units in addition to Major 
n  Up to 8 units of research can be applied to Minor 
 



Bioinformatics Lower Division Courses 

n  Three required courses are prerequisites for 
upper division courses 

1.  Advanced Programming 

n  PIC 10C or CS 32 
2.  Linear Algebra and Applications 

n  Math 33A 
3.  Introduction to Molecular Biology 

n  Life Sciences 3, 23 



Bioinformatics Upper Division Electives 

n  Statistics 100B - Introduction to Mathematical Statistics  OR Biostatistics 100B - 
Introduction to Biostatistics 

n  Computer Science 170A - Mathematical Modeling and Methods for Computer 
Science 

n  Electrical Engineering 102 - Systems and Signals  
n  Electrical Engineering 141 - Principles of Feedback Control  
n  Computer Science 122 - Algorithms in Bioinformatics and Systems Biology  
n  Computer Science 229 - Current Topics in Bioinformatics 
n  Computational and Systems Biology 186 - Computational Systems Biology: Modeling 

and Simulation of Biological Systems 
n  Human Genetics 144 - Genomic Technologies 
n  Ecology and Evolution 135 – Population Genetics 
n  Molecular Cellular and Developmental Biology 172 - Genomics and Bioinformatics  
n  Physiological Sciences 125 - Molecular Systems Biology  
n  Molecular Cellular and Developmental Biology 144 - Molecular Biology OR 

Microbiology Immunology and Molecular Genetics 132 - Cell Biology of Nucleus OR 
Chemistry or Biochemistry 153B - Biochemistry: DNA, RNA, and Protein Synthesis 



Gateway Course 

n  Students are required to take 2 unit CS 184 
“Introduction to Computational Systems Biology” 
¨  Seminars by faculty in computational biology (including many Bioinformatics 

faculty) 

n  Students encouraged to take seminar course as early 
as possible. 

n  Gateway course will be shared with other 
quantitative biology minors currently being proposed 
to build undergrad computational biology community. 



Course Plan: Computer Science Major 

n  Courses part of Major required courses: 
¨  CS 32, Math 33A, CS 180. 

n  Students will take as Engineering GE: 
¨  Chem 20A, Life Sciences 2. 

n  Students will take Sci-Tech Bio option (part of Major): 
¨  Chem 20B, Chem 30A, Life Sciences 3. 

n  Students will take CS 184 as an introduction to the area. 
n  Students can take CS 121 and CS 124 as electives for their CS major. 
n  Students will take additional bioinformatics elective courses to fulfill 

the minor requirements including 8 units of research. 

n  Students who take the optional Technical Breadth Area in 
Computational Genomics can take prerequisites and electives in the 
program: 
¨  Life Sciences 4, + 2 Bioinformatics electives 
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Human Genetics and 
Applications 
n  Relate genetics to 

traits and diseases 

24 



The Vision of Personalized 
Medicine 

Genetic and epigenetic variants + measurable environmental/behavioral factors 
 would be used for a personalized treatment and diagnosis 



Example: Warfarin 
An anticoagulant drug,  
useful in the prevention  
of thrombosis.  



Warfarin was originally 
used as rat poison.  
 
Optimal dose varies 
across the population 
 
Genetic variants (VKORC1 and  CYP2C9) affect  
the variation of the personalized optimal dose. 

Example: Warfarin 



28 



  

The Human Genome Project 
 “What we are announcing 
today is that we have reached a 
milestone…that is, covering the 
genome in…a working draft of 
the human sequence.” 
 

 “But our work previously has shown… 
that having one genetic code is important, 
but it's not all that useful.” 

“I would be willing to make a predication that within 10 years, we 
will have the potential of offering any of you the opportunity to find 
out what particular genetic conditions you may be at increased risk 
for…” 

Washington, DC 
June, 26, 2000 

29 



Effects of Common Variants on 
Lifetime Risk 
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Personalized Genomics Road Map 

31 

1.  Estimate the contribution of the genetic vs. 
environmental factors to the disease.  

2.  Find the building blocks of the disease 
model: the genetic factors, the 
environmental factors, interactions. 

3.  Construct a disease model that predicts 
treatment outcomes and prevents disease. 



Personalized Genomics Road Map 
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1.  Estimate the contribution of the genetic vs. 
environmental factors to the disease.  

2.  Find the building blocks of the disease 
model: the genetic factors, the 
environmental factors, interactions. 

3.  Construct a disease model that predicts 
treatment outcomes and prevents disease. 



Genome-Wide 
Association 

Study (GWAS) 
n  2007 Breakthrough 

of the Year 
n  More than 50 genes 

discovered to affect 
dozens of common 
diseases. 

n  Weekly news 
reports of 
“Scientists 
discovery gene 
causing ________!” 



Human Genetics 
Mother Father 

Child 

n  Disease Risk 
¨  “genetic” factors account for 

20%-80% of disease risk. 
¨  Many genes contribute to 
“complex” diseases. 

n  Personalized Medicine 
¨  Treatment decisions influenced 

by diagnostics 

n  Understanding Disease Biology 
¨  New drug targets. 
¨  Understanding of mechanism of 

disease. 

Mother 

Child 

Risk Factors 

Risk Factors 

Where are the risk factors? 
(Genetic Basis of Disease) 



Disease Association Studies 
The search for genetic factors 

Comparing the DNA contents of two populations: 

•  Cases - individuals carrying the disease. 
•  Controls - background population. 

Differences within a gene between the two 
populations is evidence the gene is involved in the 
disease. 



Single Nucleotide Polymorphisms 
(SNPs) 

AGAGCCGTCGACAGGTATAGCCTA
AGAGCCGTCGACATGTATAGTCTA 
AGAGCAGTCGACAGGTATAGTCTA
AGAGCAGTCGACAGGTATAGCCTA 
AGAGCCGTCGACATGTATAGCCTA
AGAGCAGTCGACATGTATAGCCTA 
AGAGCCGTCGACAGGTATAGCCTA
AGAGCCGTCGACAGGTATAGCCTA 

n  Human Variation 
¨  Humans differ by 

0.1% of their 
DNA. 

¨   A significant 
fraction of this 
variation is 
accounted by 
SNPs. 



Association Analysis 

AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATCGACATGATAGCC!
AGAGCCGTCGACATGTATAGTCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCGACATGATAGTC!
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATCGACATGATAGCC!
AGAGCAGTCGACAGGTATAGCCTACATGAGATCAACATGAGATCGGTAGAGCAGTGAGATCGACATGATAGCC!
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATCAACATGATAGCC!
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCAACATGATAGCC!
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCAACATGATAGTC!
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGCC!

AGAGCAGTCGACATGTATAGTCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCAACATGATAGCC!
AGAGCAGTCGACATGTATAGTCTACATGAGATCAACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGCC!
AGAGCAGTCGACATGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCAACATGATAGCC!
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGTC!
AGAGCCGTCGACAGGTATAGTCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCAACATGATAGCC!
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATCTGTAGAGCAGTGAGATCGACATGATAGCC!
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGCC!
AGAGCCGTCGACAGGTATAGTCTACATGAGATCAACATGAGATCTGTAGAGCAGTGAGATCGACATGATAGTC!

Cases: (Individuals with the disease) 

Controls: (Healthy individuals) Associated Variant 



Key Ingredient I: 
The Human Genome 

n  Human Genome Project 
¨  Published in 2001 
¨  “Big Science” 
¨  Two competing projects: NIH and Celera 
¨  Celera sequenced J. Craig Venter 
¨  Worldwide participation 
¨  Sequenced “reference” human genome 
¨  Goal to obtain sequence for consensus 

human:  what we have in common. 

n  The Genome Project… 
¨  Identified all genes 
¨  What do these genes do? 
¨  How do they influence disease? 



Key Ingredient: 
Maps of Variation 

n  The Human Haplotype Map… 
¨  Published in 2005 
¨  Worldwide survey of human variation 
¨  270 Individuals 
¨  4 Populations 
¨  4 million genetic polymorphisms 

n  informs Association Studies Design  
¨  What variation to collect? 
¨  How many people to collect? 
¨  How to analyze the data? 

n  Studies with Statistical Power… 
¨  Collect 4000+ individuals 
¨  Collect 500,000+ SNPs 



• Successor to the Human Genome Project  
• International consortium that aims in genotyping the 
 genome of 270 individuals from four different populations. 
•  Launched in 2002. First phase was finished in October 
  (Nature, 2005). 
• Collected genotypes for 3.9 million SNPs. 
• Location and correlation structure of many common SNPs. 



Public Genotype Data Growth 

2001 

Daly et al. 
Nature  
Genetics 
103 SNPs 
40,000 
genotypes 

Gabriel et al. 
Science 
3000 SNPs 
400,000  
genotypes 

2002 

TSC Data 
Nucleic Acids 
Research 
35,000 SNPs 
4,500,000 
genotypes 

2003 

Perlegen Data 
Science 
1,570,000 SNPs 
100,000,000  
genotypes 

2004 

NCBI dbSNP 
Genome 
Research 
3,000,000 SNPs 
286,000,000  
genotypes 

2005 

HapMap  
Phase 2 
5,000,000+  
SNPs 
600,000,000+ 
genotypes 

2006 



Key Ingredient: 
High-Throughput  
Genotyping Technology 

n  Collects SNP information from DNA  
¨  2 Major Companies: Affymetrix and 

Illuminia 
¨  Based on hybridization technology 

n  Significant Cost Savings 
¨  Reduces cost of collecting genotype 

information from 14 cents per genotype 
to .02 cents per genotype. 

¨  The HapMap originally cost over 100 
million dollars.   

¨  Today the HapMap would cost $20,000. 
¨  Associations studies now cost in the 

low millions. 



Published Genome-Wide Associations through 
6/2009, 439 published GWA at p < 5 x 10-8 

 
NHGRI GWA Catalog 

www.genome.gov/GWAStudies 



Published Genome-Wide Associations through 6/2010,  
904 published GWA at p<5x10-8 for 165 traits 

NHGRI GWA Catalog 
www.genome.gov/GWAStudies 



NHGRI GWA Catalog 
www.genome.gov/GWAStudies 
www.ebi.ac.uk/fgpt/gwas/  

Published Genome-Wide Associations through 12/2012 
Published GWA at p≤5X10-8 for 17 trait categories 



Key Ingredient: 
High-Throughput  
Sequencing Technology 

n  Collects sequence information from 
DNA  
¨  Many companies developing technology 
¨  Allows discovery of rare variation 

n  Significant Cost Savings 
¨  Reduces cost of collecting individuals 

genome from $1,000,000,000 to $5,000.   
¨  Within 2 years, cost of genome will be 

under $1,000. 
¨  Many projects leveraging this 

technology 
¨  Thousand Genomes Project 



Sequencing Costs 

Source: The Economist 
July 17th, 2010 



Many Computational Problems 
n  Genotype-Phenotype Problems 

¨ Design and Analysis of Association Studies 
¨ Combining Association Studies 
¨ Integrating Prior Information 
¨ Population Structure 

n  New Technology Problems 
¨ Sequence Assembly 
¨ Read Mapping 
¨ Identifying Structural Variation 

n  Population Genetics Problems 
¨ Inference of Human Genetic History 
¨ Admixed Populations 



Break! 



How do we get someone’s DNA sequence? 
Where are my mutations? 

n  Next generation sequencing. 
¨  Cheap sequencing. 
¨  “Short Reads” 

Illumina / Solexa  
Genetic Analyzer 1G 
1000 Mb/run, 35bp reads 

AGAGCAGTCGAC
AGGTATAGTCTA
CATGAGATCGAC
ATGAGATCGGTA
GAGCCGTGAGAT
CGACATGATAGC
CAGAGCAGTCGA
CAGGTATAGTCT
ACATGAGATCGA
CATGAGATCGGT
AGAGCCGTGAGA
TCGACATGATAG
CCAGAGCAGTCG
ACAGGTATAGTC
TACATGAGATCG
ACATGAGATCGG
TAGAGCCGTGAG
ATCGACATGATA
GCCAGAGCAGTC
GACAGGTATAGT
CTACATGAGATC
GACATGAGATCG
GTAGAGCCGTGA
GATCGACATGAT
AGCCAGAGCAGT
CGACAGGTATAG
TCTACATGAGAT
CGACATGAGATC
GGTAGAGCCGTG
AGATCGACATGA
TAGCCAGAGCAG
TCGACAGGTATA
GTCTACATGAGA
TCGACATGAGAT
CGGTAGAGCCGT
GAGATCGACATG
ATAGCCAGAGCA
GTCGACAGGTAT
AGTCTACATGAG
ATCGACATGAGA
TCGGTAGAGCCG
TGAGATCGACAT
GATAGC!

Sequencing	
  Technology	
  



Short Read Sequencing Problem 
(A Computer Science Problem) 

•  Short read sequencers generate 
random short substrings from the 
DNA sequence of a certain length. 

AGAGCAGTCGAC
AGGTATAGTCTA
CATGAGATCGAC
ATGAGATCGGTA
GAGCCGTGAGAT
CGACATGATAGC
CAGAGCAGTCGA
CAGGTATAGTCT
ACATGAGATCGA
CATGAGATCGGT
AGAGCCGTGAGA
TCGACATGATAG
CCAGAGCAGTCG
ACAGGTATAGTC
TACATGAGATCG
ACATGAGATCGG
TAGAGCCGTGAG
ATCGACATGATA
GCCAGAGCAGTC
GACAGGTATAGT
CTACATGAGATC
GACATGAGATCG
GTAGAGCCGTGA
GATCGACATGAT
AGCCAGAGCAGT
CGACAGGTATAG
TCTACATGAGAT
CGACATGAGATC
GGTAGAGCCGTG
AGATCGACATGA
TAGCCAGAGCAG
TCGACAGGTATA
GTCTACATGAGA
TCGACATGAGAT
CGGTAGAGCCGT
GAGATCGACATG
ATAGCCAGAGCA
GTCGACAGGTAT
AGTCTACATGAG
ATCGACATGAGA
TCGGTAGAGCCG
TGAGATCGACAT
GATAGC!

Full	
  DNA	
  Sequence	
  

AGAGCAGTCGACAGGTATAGTCTA	
  

TAGCCAGAGCAGTCGACAGGTATA	
  

AGCAGTCGACAGGTATAGTCTACA	
  
GCAGTCGACAGGTATAGTCTACAT	
  
GATAGCCAGAGCAGTCGACAGGTA	
  
GAGATCGACATGATAGCCAGAGCA	
  

GAGCAGTCGACAGGTATAGTCTAC	
  

TGAGATCGACATGATAGCCAGAGC	
  

CAGTCGACAGGTATAGTCTACATG	
  
TCGACATGAGATCGGTAGAGCCGT	
  

ATGAGATCGGTAGAGCCGTGAGAT	
  

GTAGAGCCGTGAGATCGACATGAT	
  
GAGATCGACATGATAGCCAGAGCA	
  



Short Reads Difficulties 
n  We don’t know where 

each read comes from! 
n  Can’t identify where 

the mutations are! 

n  What do we do? 

AGAGCAGTCGACAGGTATAGTCTA	
  

TAGCCAGAGCAGTCGACAGGTATA	
  

AGCAGTCGACAGGTATAGTCTACA	
  
GCAGTCGACAGGTATAGTCTACAT	
  
GATAGCCAGAGCAGTCGACAGGTA	
  
GAGATCGACATGATAGCCAGAGCA	
  

GAGCAGTCGACAGGTATAGTCTAC	
  

TGAGATCGACATGATAGCCAGAGC	
  

CAGTCGACAGGTATAGTCTACATG	
  
TCGACATGAGATCGGTAGAGCCGT	
  

ATGAGATCGGTAGAGCCGTGAGAT	
  

GTAGAGCCGTGAGATCGACATGAT	
  
GAGATCGACATGATAGCCAGAGCA	
  



Key Idea:  “Re”-Sequencing 

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
My	
  Genome:	
  

We	
  know	
  that	
  my	
  genome	
  is	
  very	
  close	
  to	
  the	
  Human	
  
genome.	
  

TCGACATGAGATCGGTAGAGCCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAGCCGT	
  

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
Recovered	
  Sequence:	
  



“Re”-Sequencing Output 

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
My	
  Genome:	
  

Resequencing	
  provides	
  a	
  list	
  of	
  changes	
  to	
  make	
  from	
  
the	
  reference	
  to	
  change	
  it	
  to	
  the	
  target.	
  	
  Similar	
  to	
  
unix	
  “diff”.	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
Recovered	
  Sequence:	
  

  G          G       C	
  
A list of changes 



“Re”-Sequencing Problems 

TACATGAGATCGACATGAGATCGGTACATGAGATCCACAT	
  
My	
  Genome:	
  

ACATGAGATCGACAT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTACATGAGATCCACAT	
  
The	
  Human	
  Genome:	
  

ACATGAGATCGACAT	
  

TACATGAGATCGACATGAGATCGGTACATGAGATCGACAT	
  
	
  

Recovered	
  Sequence:	
  

TACATGAGATCCACATGAGATCTGTACATGAGATCCACAT	
  
The	
  Human	
  Genome:	
  

ACATGAGATCGACAT	
  

Repeated Region 

Error! 



“Re”-Sequencing Problems 

TACATGAGGGGGGGGGGAGATCGGTACATGAGATCCACAT	
  
My	
  Genome:	
  

GAGGGGGGGGG	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTACATGAGATCCACAT	
  
The	
  Human	
  Genome:	
  

GAGGGGGGGGG	
  
TACATGAGATCCACATGAGATCTGTACATGAGATCCACAT	
  
The	
  Human	
  Genome:	
  

Too many mismatches to match the read to the reference. 
Since we don’t know where it came from, we can’t identify  
the difference in the target seqeunce. 



Key Question:  When does 
resequencing work? 
n  We must be able to map a substring from the 

target to its corresponding place in the 
reference. 

n  Why can this not happen? 
¨  Reference has repeated sequences.  In this case 

reads from target will map to multiple places. 
¨  Target sequence differs that resemblance to 

reference sequence is lost. 



Formalizing the Problem 

n  Target sequence – Sequence of the genome 
that we are analyzing and collecting reads 
from. 

n  Reference sequence – Sequence of the 
similar genome which we have available. 

n  Constraints on the reference sequence 
¨  Non repetitive sequences (or non-repetitive portion) 

n  Constrains on difference between the target 
and reference. 
¨  Assume that there are a small number of structured 

differences. 



Simple Resequencing Formulation 

n  Assume that the reference sequence is of 
length N. 

n  Assume target sequence is of length N. 
n  Constraint on Mutations - Assume that target 

sequence differs from reference by less than 
D mutations in any window of L.   

n  Unique Sequence Assumption – Assume that  
any 2 positions in the reference sequence 
differ by more than D+1 mismatches. 



Algorithmic “Re”-Sequencing 
Challenges 
 
n  Sequences are long! 

¨  Human Genome is 3,000,000,000 long. 

n  Sequencers generate many reads! 
¨  A single run generates over 300,000,000 reads. 

n  We need efficient algorithms to “map” each 
read to its location in the genome. 

There	
  are	
  other	
  challenges	
  which	
  we	
  are	
  not	
  men@oning.	
  



Trivial Mapping Algorithm 

•  We can slide our read along the genome and count the 
total mismatches between the read and the genome. 

•  If the mismatches are below a threshold, we say that it is a 
match. 

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAGCCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
TCGACATGAGATCGGTAGAGCCGT	
  

Total	
  of	
  18	
  mismatches.	
  	
  Not	
  below	
  threshold.	
  	
  Not	
  a	
  match.	
  



Trivial Mapping Algorithm 
TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAGCCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
TCGACATGAGATCGGTAGAGCCGT	
  

Total	
  of	
  15	
  mismatches.	
  	
  Not	
  below	
  threshold.	
  	
  Not	
  a	
  match.	
  



Trivial Mapping Algorithm 

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAGCCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
TCGACATGAGATCGGTAGAGCCGT	
  

Total	
  of	
  23	
  mismatches.	
  	
  Not	
  below	
  threshold.	
  	
  Not	
  a	
  match.	
  



Trivial Mapping Algorithm 

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAGCCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
TCGACATGAGATCGGTAGAGCCGT	
  

Total	
  of	
  23	
  mismatches.	
  	
  Not	
  below	
  threshold.	
  	
  Not	
  a	
  match.	
  



Trivial Mapping Algorithm 

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAGCCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
TCGACATGAGATCGGTAGAGCCGT	
  

Total	
  of	
  3	
  mismatches.	
  	
  Below	
  threshold.	
  	
  A	
  match!	
  



Complexity of Trivial Algorithm 

n  3,000,000,000 length genome (N) 
n  300,000,000 reads to map (M) 
n  Reads are of length 30 (L) 
n  Number of mismatches allowed is 2 (D). 
n  Each comparison of match vs. mismatch 

takes 1/1,000,000 seconds (t). 
 
n  Important: Trivial algorithm only solves 

problem under assumptions. 

Total	
  Time	
  =	
  N*M*L*t	
  =	
  27,000,000,000,000	
  seconds	
  or	
  864,164	
  years!	
  



Some observations 

n  Most positions in the genome match very 
poorly. 

n  We are looking for only a few mismatches. 
 (D is small) 

n  A substring of our read will match perfectly. 



Perfect Matching Read Substrings  

n  In each case, there is a perfect match of L/3. 

Three	
  “worst”	
  
possible	
  
cases	
  for	
  
placement	
  
of	
  mutaLons.	
  

L/3	
   L/3	
   L/3	
  



Finding a perfect match of length L/3 

n  Intuition:  Create an 
index (or phone book) 
for the genome. 

n  We can look up an 
entry quickly. 

Sequence   Positions 
AAAAAAAAAA !32453, 64543, 76335!
AAAAAAAAAC !64534, 84323, 96536!
AAAAAAAAAG !12352, 32534, 56346!
AAAAAAAAAT !23245, 54333, 75464!
AAAAAAAACA !!
AAAAAAAACC !43523, 67543!
…!
CAAAAAAAAA !32345, 65442!
CAAAAAAAAC !34653, 67323, 76354!
…!
TCGACATGAG !54234, 67344, 75423!
TCGACATGAT !11213, 22323!
…!
TTTTTTTTTG !64252!
TTTTTTTTTT !64246, 77355, 78453!

If	
  L=30,	
  each	
  entry	
  will	
  have	
  a	
  key	
  
of	
  length	
  10.	
  	
  Each	
  entry	
  will	
  
contain	
  on	
  average	
  N/410	
  
posiLons.	
  	
  (Approximately	
  3,000).	
  

If	
  L=45,	
  each	
  entry	
  will	
  have	
  a	
  key	
  of	
  length	
  15.	
  	
  
Each	
  entry	
  will	
  contain	
  on	
  average	
  3	
  posiLons.	
  



Complexity of Indexing Algorithm 
•  We need to look up each third of the read in the 

index. 
•  For L=30, our index will contain entries of length 

10.  Each entry will contain on average N/(4L/3) or 
3,000 positions. 

•  For each position, we need to compute the 
number of mismatches. 

•  Our running time is L* M*3*N/(4L/3)*T=81,000,000 
seconds or 937 days. 

•  If L=45, then the time is 81,000 seconds or 22.5 
hours. 



More problems:  Sequencing Errors 
n  Each sequence read can have some random 

errors. 

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
My	
  Genome:	
  

TCGACATGAGATCGGTAGAACCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCGACATGAGATCGGTAGAACCGTGAGATC	
  
Recovered	
  Sequence:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAACCGT	
  



Sequencing Errors: Solution 
n  Collect redundant data. 

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
My	
  Genome:	
  

TCGACATGAGATCGGTAGAACCGT!
GACAAGAGATCGGTAGAGCCGTGA!
TGAGATCGGTAGAGCCGTGAGATC!
	
  

Sequence	
  Reads:	
  

TACATGAGATCGACATGAGATCGGTAGAACCGTGAGATC	
  
Recovered	
  Sequence:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

      TCGACATGAGATCGGTAGAACCGT!
        GACAAGAGATCGGTAGAGCCGTGA!
            TGAGATCGGTAGAGCCGTGAGATC!
	
  



How much coverage do we 
need? 
n  If error rate is e, and we are going to predict 

the consensus sequence, what is the error 
rate if the coverage is 3. 

n  We will make a prediction with an error if two 
out of our three reads have an error in the 
same place.   

n  This is approximately 3e2. 
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Diploid Sequencing 

n  Humans have 2 chromosomes. 
n  Each chromosome may have a different 

SNP. 
n  Some reads come from 1 chromosome, 

some come from other chromsome. 
n  Why does consensus method not work? 
n  How do we address this problem? 



“Re”-Sequencing: Insertions 

TACATGAGATCCACATAGAGATCTGTAGAGCTGTGAGATC	
  
My	
  Genome:	
  

CCACATAGAGATCTGTAGAGCTGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  

CCACATAGAGATCTGTAGAGCTGT	
  

CCACATAGAGATCTGTAGAGCTGT	
  

How do we deal with this case? 



“Re”-Sequencing: Insertions 

TACATGAGATCCACATAGAGATCTGTAGAGCTGTGAGATC	
  
My	
  Genome:	
  

CCACATAGAGATCTGTAGAGCTGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

CCACATAGAGATCTGTAGAGCTGT	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
CCACATAGAGATCTGTAGAGCTGT	
  

TACATGAGATCCACAT-GAGATCTGTAGAGCTGTGAGATC	
  
Solu@on:	
  Add	
  Inser@on	
  to	
  the	
  Human	
  Genome	
  

CCACATAGAGATCTGTAGAGCTGT	
  



Difficulties for handling 
insertions 
n  Requires “Alignment” of reads to genome. 
n  Much more computational intensive 

n  Need to change assumptions for “sequence 
uniqueness” to use edit distance. 



Many other challenges 

•  Repeated regions in the genome. 
–  When we align a read, we get two positions that it 

matches! 

•  Coverage of sequence reads is not uniform 
–  Some places we have many reads, while some we 

have fewer.  How do we design an approach so we 
can always recover the sequence. 

•  Large memory requirements 
–  We need to fit our index into RAM.  Often tens of 

Gigabytes or greater. 


