Computational Genetics Winter 2013 Lecture 10

Eleazar Eskin University of California, Los Angeles

Pair End Sequencing

Lecture 10. February 20th, 2013

(Slides from Ben Raphael)

Chromosome Painting: Normal Cells

Chromosome Painting: Tumor Cells

© Copyright 2002, Unistel Medical Laboratories, Unistel Group Holdings (Pty) Ltd

Note: This karyotype was prepared using a FISH technique known as "chromosome painting". As well as having a translocation from chromosome 22, chromosome 9 also has translocated material from chromosome 8.

Rearrangements in Tumors

- Change gene structure and regulatory "wiring" of the genome.
- Create "bad" novel *fusion* genes and break "good" old genes.
- Example: translocation in leukemia.

■ GleevecTM (Novartis 2001) targets BCR-ABL oncogene.

Complex Tumor Genomes

- 1) What are detailed architectures of tumor genomes?
- 2) What rearrangements/duplications produce these architectures and what is the order of these events?
- 3) What are the novel fusion genes and old "broken" genes?

- What are the the "architectural blocks" forming the existing genomes and how to find them?
- What is the architecture of the ancestral genome?
- What is the evolutionary scenario for transforming one genome into the other?

History of Chromosome X

- Blocks represent conserved genes.
- In the course of evolution or in a clinical context, blocks 1,2,...,10 could be misread as:

- Blocks represent conserved genes.
- In the course of evolution or in a clinical context, blocks 1,...,10 could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.
- Evolution: occurred one-two times every million years.
- **Cancer:** may occur every month.

The inversion introduced two *breakpoints* \checkmark (disruptions in order).

Measuring Structural Changes in Tumors: Cytogenetics

- Directly visualize (fluorescently) labeled chromosomes.
 - Chromosome banding, mFISH, SKY

Weakness:

- Physical location of chromosomal junctions *not* revealed. Low resolution.
- No/little information about copy number changes.

Paired End Sequencing (PE) C. Collins et al. (UCSF Cancer Center)

1) Pieces of tumor genome: clones (100-250kb).

 2) Sequence ends of clones (500bp).
3) Map end sequences to human genome.

Each clone corresponds to pair of end sequences (*PE pair*) (*x*,*y*). Typical Next Generation Sequencing read lengths are shorter.

PE Pairs

- Order PE pair such that x < y.
- PE pair (*x*,*y*) is
 - **valid** if
 - *x*, *y* on same chromosome. and
 - $l \le y x \le L$, min (max) size of clone.

- x y
- *x*, *y* have opposite, convergent orientations
- invalid, otherwise.
 - Results from rearrangement or experimental "noise".

Tumor Genome Reconstruction Puzzle

Reconstruction of Tumor History

- Use knowledge of known rearrangement mechanisms
 - e.g. inversions, translocations, etc.
- Find simplest explanation for data, given these mechanisms.
- Motivation: Sorting by Reversals

PE Sorting Problem

• $\mathbf{G} = [0, M]$, unichromosomal genome.

• Reversal $\rho_{s,t}(x) = \int x$, if x < s or x > t, t - (x - s), otherwise.

Given: PE pairs $(x_1, y_1), ..., (x_n, y_n)$ Find: Minimum number of reversals $\rho_{s1,t1}$, ..., $\rho_{sn, tn}$ such that if $\rho = \rho_{s1,t1}..., \rho_{sn, tn}$ then $(\rho x_1, \rho y_1), ..., (\rho x_n, \rho y_n)$ are valid PE pairs.

Human chromosomes 5 inversions 15 translocations Raphael et al.

Complications with MCF7:

Chromosomes 1,3,17, 20

Total length: 31Mb

Rearrangement Signatures

Human

Tumor

Complex Tumor Genomes

Structure of Duplications in Tumors?

• Duplicated segments may co-localize (Guan et al. *Nat.Gen.*1994)

Mechanisms not well understood.

Tumor Amplisomes

