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Home Work & Midterm 

n  HW1 Due 4/17/13 
n  HW2 Due 4/22/13 
n  Power Tagging Paper Question due Monday 

(4/21/14) 
n  Power Tagging Paper Responses due Wednesday 

(4/23/14) 
n  Project Selection was due (4/11/14) 

n  Midterm Review (4/21/14) 
n  Midterm (4/23/14) 



Midterm Review 

Lecture 7. 
April 21st , 2014 



Midterm 

n  60% Applied Problems 
¨  Perform Associations (Examples from last class) 
¨  Compute Power for Association 

n  40% Association Derivation Questions 



Midterm Questions 

1.  Given N/2 case individuals and N/2 control 
individuals.  p+

A and p-
A are the observed 

frequencies.  If the true frequencies are p+
A and p-

A, 
show that the difference of the observed 
frequencies is normally distributed with mean µ and 
variance σ2.   

2.  Derive a statistic that is a multiple of the allele 
frequency difference which has variance 1.  What is 
the mean of this statistic? 

^ ^ 



Midterm Questions 

3.  Now assume that we are performing an 
association at SNP A and while the causal 
mutation is at SNP B.  Assume the 
correlation coefficient between SNPs A and 
B is r2.  Show power of detecting the 
association at SNP A by genotyping N/r2 
individuals is equal to the power of detecting 
the association if we genotyped SNP B with 
N individuals.  



Midterm Questions 

n  (Grad student only question)  Now assume 
that there are N+ case and N- control 
individuals in the association study.  Derive a 
new statistic that follows the standard normal 
distribution.  What is the power of a study 
compared to a study with N individuals? 



Association Statistics 

n  Assume we are given N/2 cases and N/2 control 
individuals. 

n  Since each individual has 2 chromosomes, we have 
a total of N case chromosomes and N control 
chromosomes. 

n  At SNP A, let p+
A and p-

A be the observed case and 
control frequencies respectively. 

n  We know that: 
 p+

A ~ N(p+
A, p+

A(1-p+
A)/N). 

 p-
A ~ N(p-

A, p-
A(1-p-

A)/N). 

^ ^ 

^ 

^ 



Association Statistics 

 p+
A ~ N(p+

A, p+
A(1-p+

A)/N). 
 p-

A ~ N(p-
A, p-

A(1-p-
A)/N). 

 p+
A- p-

A ~ N(p+
A- p-

A,(p+
A(1-p+

A)+p-
A(1-p-

A))/N) 
 We approximate  
 p+

A(1-p+
A)+p-

A(1-p-
A) ≈ 2 pA(1-pA) 

 then if p+
A =p-

A 
  

^ 
^ 
^ ^ 

€ 

SA =
ˆ p +A − ˆ p −A

2 /N ˆ p A (1− ˆ p A )
~ N(0,1)

^ ^ pA=(p+
A+p-

A)/2 ^ ^ ^ 



- 

Association Statistic 

n  Under the null hypothesis p+
A- p-

A=0  
n  We compute the statistic SA. 
n  If SA< Φ-1(α/2) or SA>-Φ-1(α/2) then the 

association is significant at level α. € 

SA =
ˆ p +A − ˆ p −A

2 /N ˆ p A (1− ˆ p A )
~ N(0,1)



Association Power 
n  Lets assume that SNP A is causal and p+

A ≠ p-
A 

n  Given the true p+
A and p-

A, if we collect N individuals, and 
compute the statistic SA, the probability that SA has a 
significance level of α is the power. 

n  Power is the chance of detecting an association of a certain 
strength with a certain number of individuals. 

n  We can set the number of individuals to achieve a certain 
power.   



Association Statistic 
n  Lets assume that p+

A ≠ p-
A then 

€ 

SA =
ˆ p +A − ˆ p −A

2 /N ˆ p A (1− ˆ p A )
~ N pA

+ − pA
−

2 /N pA (1− pA )
,1
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SA =
ˆ p +A − ˆ p −A

2 /N ˆ p A (1− ˆ p A )
~ N ( pA

+ − pA
− ) N

2pA (1− pA )
,1
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€ 

SA =
ˆ p +A − ˆ p −A

2 /N ˆ p A (1− ˆ p A )
~ N λA N ,1( )



Association Power 

€ 

SA =
ˆ p +A − ˆ p −A

2 /N ˆ p A (1− ˆ p A )
~ N λA N ,1( )

€ 

λA N

Power of 
association 
test 

Threshold for 
significance 

Non-centrality 
parameter. 



Association Power 

n  Statistical Power of an association with N 
individuals, non-centrality parameter          
and significance threshold α is P(α,       ,N)= 

n  Note that if λ=0, power is always α. 
€ 

λ N

€ 

λ N

=Φ(Φ−1(α / 2)+λ N )+1−Φ(−Φ−1(α / 2)+λ N )



Indirect Association 

n  Now lets assume that we have 2 markers, A 
and B.  Let us assume that marker B is the 
causal mutation, but we are observing marker 
A. 

n  If we observed marker B directly our statistic 
would be 

€ 

λB =
(pB

+ − pB
− )

2pB (1− pB )

€ 

SB ~ N λB N ,1( )



Indirect Association 

n  However, we are observing A where our 
statistic is 

n  What is the relation between SA and SB? 

€ 

λA =
(pA

+ − pA
− )

2pA (1− pA )

€ 

SA ~ N λA N ,1( )



Indirect Association 

n  We want to relate 

n  to 

€ 

λA =
(pA

+ − pA
− )

2pA (1− pA )

€ 

SA ~ N λA N ,1( )

€ 

λB =
(pB

+ − pB
− )

2pB (1− pB )

€ 

SB ~ N λB N ,1( )



Indirect Association 

n  Since conditional probability distributions are 
equal in case and control samples 

€ 

pA
+ = pAB

+ + pAb
+

pA
+ = pB

+ pA |B + (1− pB
+ )pA |b

pA
− = pB

− pA |B + (1− pB
− )pA |b

pA
+ − pA

− = pA |B (pB
+ − pB

− ) − pA |b (pB
+ − pB

− )
pA

+ − pA
− = (pB

+ − pB
− )(pA |B − pA |b )



Indirect Association 
n  Then 

€ 

λA =
(pA

+ − pA
− )

2pA (1− pA )
=
(pB

+ − pB
− )(pA |B − pA |b )
2pA (1− pA )

=
(pB

+ − pB
− )(pA |B − pA |b )
2pA (1− pA )

2pB (1− pB )
2pB (1− pB )

=
(pB

+ − pB
− )

2pB (1− pB )
(pA |B − pA |b ) 2pB (1− pB )

2pA (1− pA )

= λB
(pA |B − pA |b ) 2pB (1− pB )

2pA (1− pA )



Indirect Association 

n  Note that 

€ 

λA = λB
(pA |B − pA |b ) 2pB (1− pB )

2pA (1− pA )

= λB

pAB
pB

−
pAb
1− pB

$ 

% 
& 

' 

( 
) pB (1− pB )

pA (1− pA )

= λB

pAB − pAB pB − pAb pB
pB (1− pB )

$ 

% 
& 

' 

( 
) pB (1− pB )

pA (1− pA )

= λB
pAB − pA pB

pA (1− pA ) pB (1− pB )
= λB r2

λA = λB r2



Indirect Association 

n  How many individuals, NA, do we need to 
collect at marker A to achieve the same 
power as if we collected NB markers at 
marker B. 

€ 

SA ~ N λA NA ,1( )

€ 

SB ~ N λB NB ,1( )
λA NA = λB NB

λB r2 NA = λB NB

NA =
NB

r2λA = λB r2



Visualization in terms of Power 

€ 

λB N

Power of 
association 
test 

Threshold for 
significance 

Non-centrality 
parameters. 

€ 

λA N

λA = λB r2



MultiSNP Association Example 

n  Collect data at 5 SNPs 
n  Significance Threshold α=0.05 
n  Sample: 100 Cases and 100 Controls 
n  Total of 200 Case Chromosomes and 200 

Control Chromosomes 

€ 

ˆ p 1
+ = 120

200 = .6 ˆ p 2
+ = 80

200 = .4 ˆ p 3
+ = 60

200 = .3 ˆ p 4
+ = 100

200 = .5 ˆ p 5
+ = 120

200 = .6
ˆ p 1
− = 100

200 = .5 ˆ p 2
− = 75

200 = .375 ˆ p 3
− = 65

200 = .325 ˆ p 4
− = 95

200 = .475 ˆ p 5
− = 125

200 = .625
ˆ p 1 = .55 ˆ p 2 = .3825 ˆ p 3 = .3125 ˆ p 4 = .4875 ˆ p 5 = .6125



MultiSNP Association Example 

€ 

ˆ p 1
+ = 120

200 = .6 ˆ p 2
+ = 80

200 = .4 ˆ p 3
+ = 60

200 = .3 ˆ p 4
+ = 100

200 = .5 ˆ p 5
+ = 120

200 = .6
ˆ p 1
− = 100

200 = .5 ˆ p 2
− = 75

200 = .375 ˆ p 3
− = 65

200 = .325 ˆ p 4
− = 95

200 = .475 ˆ p 5
− = 125

200 = .625
ˆ p 1 = .55 ˆ p 2 = .3825 ˆ p 3 = .3125 ˆ p 4 = .4875 ˆ p 5 = .6125

€ 

S1 =
.6 − .5

2 /200 .55(1− .55)
= 2.01 S2 =

.4 − .375
2 /200 .3825(1− .3825)

= .514 S3 =
.3− .325

2 /200 .3125(1− .3125)
= −.54

S4 =
.5 − .475

2 /200 .4875(1− .4875)
= .500 S5 =

.6 − .625
2 /200 .6125(1− .6125)

= −0.513

S1=Smax=2.01  (Is this significant?) 
Per-marker threshold αs=α/5=0.01 (Bonferroni) 
-Φ-1(0.01/2)=2.57 
Association is not significant 



MultiSNP Association Example 

n  Collect data at 5 SNPs 
n  Significance Threshold α=0.05 
n  Sample: 1000 Cases and 1000 Controls 
n  Total of 2000 Case Chromosomes and 2000 

Control Chromosomes 
 

€ 

ˆ p 1
+ = 1200

2000 = .6 ˆ p 2
+ = 800

2000 = .4 ˆ p 3
+ = 600

2000 = .3 ˆ p 4
+ = 1000

2000 = .5 ˆ p 5
+ = 1200

2000 = .6
ˆ p 1
− = 1000

2000 = .5 ˆ p 2
− = 750

2000 = .375 ˆ p 3
− = 650

2000 = .325 ˆ p 4
− = 950

2000 = .475 ˆ p 5
− = 1250

2000 = .625
ˆ p 1 = .55 ˆ p 2 = .3825 ˆ p 3 = .3125 ˆ p 4 = .4875 ˆ p 5 = .6125



MultiSNP Association Example 

€ 

S1 =
.6 − .5

2 /2000 .55(1− .55)
= 6.36 S2 =

.4 − .375
2 /2000 .3825(1− .3825)

=1.63 S3 =
.3− .325

2 /2000 .3125(1− .3125)
= −1.71

S4 =
.5 − .475

2 /2000 .4875(1− .4875)
=1.58 S5 =

.6 − .625
2 /2000 .6125(1− .6125)

= −1.62

S1=Smax=6.36  (Is this significant?) 
Per-marker threshold αs=α/5=0.01 (Bonferroni) 
-Φ-1(0.01/2)=2.57 
Association is significant 

€ 

ˆ p 1
+ = 1200

2000 = .6 ˆ p 2
+ = 800

2000 = .4 ˆ p 3
+ = 600

2000 = .3 ˆ p 4
+ = 1000

2000 = .5 ˆ p 5
+ = 1200

2000 = .6
ˆ p 1
− = 1000

2000 = .5 ˆ p 2
− = 750

2000 = .375 ˆ p 3
− = 650

2000 = .325 ˆ p 4
− = 950

2000 = .475 ˆ p 5
− = 1250

2000 = .625
ˆ p 1 = .55 ˆ p 2 = .3825 ˆ p 3 = .3125 ˆ p 4 = .4875 ˆ p 5 = .6125



MultiSNP Power 

n  Assume that we have 5 independent SNPs, 3 
have minor allele frequency of .4 and 2 have 
a minor allele frequency of .2.  Assume that 
the relative risk of one of them is 2.0 (we do 
not know which one).  Assume that we are 
collecting 100 case and 100 control 
individuals.  With α=0.05, what is the power 
of this association study? 



MultiSNP Power 

n  If a SNP with minor allele frequency of .4 is 
causal, then 

n  If a SNP with minor allele frequence of .2 is 
causal, then 

€ 

pA
+ =

γp
(γ −1)p +1

=
2* .4

(2 −1).4 +1
= .57 pA

− = p = .4 pA =
pA

+ + pA
−

2
= .485

€ 

pA
+ =

γp
(γ −1)p +1

=
2* .2

(2 −1).2 +1
= .33 pA

− = p = .2 pA =
pA

+ + pA
−

2
= .266



MultiSNP Power 

n  If a SNP with minor allele frequency of .4 is 
causal, then 

n  If a SNP with minor allele frequence of .2 is 
causal, then 

€ 

λp= .4 N =
pA

+ − pA
−

2 /N pA (1− pA )
=

.57 − .4
2 /200 .485(1− .485)

= 3.4

€ 

λp= .2 N =
pA

+ − pA
−

2 /N pA (1− pA )
=

.33− .2
2 /200 .266(1− .266)

= 2.9



MultiSNP Power 

n  If α=0.05, then the per-marker threshold using 
the Bonferroni correction, αs= α/5=0.01. 

n  The power at a SNP with minor allele 
frequency 0.4 is 

n  At a SNP with minor allele frequency 0.2 

€ 

power =Φ(Φ−1(α s /2) + λ N ) +1− (−Φ−1(α s /2) + λ N )
=Φ(Φ−1(0.005) + 3.4) +1− (−Φ−1(0.005) + 3.4)
= .795

€ 

power =Φ(Φ−1(α s /2) + λ N ) +1− (−Φ−1(α s /2) + λ N )
=Φ(Φ−1(0.005) + 2.9) +1− (−Φ−1(0.005) + 2.9)
= .627



MultiSNP Power 

n  Since there are 3 SNPs with minor allele 
frequence 0.4 and 2 SNPs with minor allele 
frequency 0.2, the total power is 

€ 

total power =
3* .795 + 2* .627

5
= .728



MultiSNP Power with Tags 
n  Assume you have 5 SNPs, 2 of them are tags. Assume 

that the relative risk of one of them is 2.0 (we do not 
know which one).  Assume that we are collecting 100 
case and 100 control individuals.  With α=0.05, what is 
the power of this association study?  

.4
 .4
 .4
 .2
 .2


tag tag 

r2=.8 r2=.7 r2=.8 



MultiSNP Power with Tags 
n  Since there are 2 tags, αs=α/2=0.05/2=0.025 

.4
 .4
 .4
 .2
 .2


tag tag 

r2=.8 r2=.7 r2=.8 

Non-centrality parameters 
3.4*√.8=3.04 3.4*√1=3.4 3.4*√.7=2.84 2.9*√.8=2.59 2.9*√1=2.9 



MultiSNP Power with Tags 

€ 

power at SNP 1=Φ(Φ−1(0.0125) + 3.04) +1− (−Φ−1(0.0125) + 3.04) = .787
power at SNP 2 =Φ(Φ−1(0.0125) + 3.4) +1− (−Φ−1(0.0125) + 3.4) = .877
power at SNP 3 =Φ(Φ−1(0.0125) + 2.84) +1− (−Φ−1(0.0125) + 2.84) = .725
power at SNP 4 =Φ(Φ−1(0.0125) + 2.59) +1− (−Φ−1(0.0125) + 2.59) = .636
power at SNP 5 =Φ(Φ−1(0.0125) + 2.9) +1− (−Φ−1(0.0125) + 2.9) = .745

total power = .754



Sequencing Coverage 

Lecture 7. 
April 21st, 2014 

(Slides from Jae-Hoon Sul)




Sequence Mapping Coverage 

n  If a genome is length N (human is 
3,000,000,000), and the total length of all 
sequence reads collected is M, the coverage 
ratio is defined at M/N. 

n  Often written with an “x”.  For example, 10x 
or 20x coverage. 



Sequencing Coverage Statistics 

n  If length of the genome is N the probability of 
the event that a single read position starts at 
a single position in the genome is 1/N (very 
small). 

n  If the number of reads is K, the total number 
of read positions that start at a single 
genome position is the number of times that 
an event with probability 1/N happens out of 
K trials. 

n  Poisson distribution. 



Sequencing Coverage Statistics 

n  If length of the genome is N the probability of 
the event that a single read of length L 
position spanning a single position in the 
genome approximately L/N (also very small). 

n  If the sum of the length of all M reads of 
length L is M=K*L, the total number of read 
positions that start at a single genome 
position is the number of times that an event 
with probability 1/N happens out of M trials. 

n  Approximately Poisson distribution. 



Poisson Distribution 

n  Discrete probability distribution to compute 
probability of (rare) events given known mean 

n  Only one parameter: λ, mean of distribution 
n  Probability Mass Function 

n  Mean = λ 
n  Variance = λ  
 	


€ 

Pr(Nt = k) =
e−λλk

k!



Poisson Distribution to 
Sequencing Coverage 
n  λ=M/N. 
n  Probability that exactly X reads span a 

certain position. 
¨  dpois(X, λ) 

n  Probability that X or fewer reads span a 
certain position. 
¨  ppois(X, λ) 

n  At least Y% of the genome is covered with 
this many reads 
¨  qpois(Y, λ)  



Poisson and Sequencing 
Coverage 
n  Probability that X or fewer reads span a 

certain position. 
¨  ppois(X,λ) = 

€ 

dpois(i,λ)
i= 0

X

∑



Coverage examples 
n  For human genome (L=3,000,000,000) 

sequenced at 30x coverage, what is the 
probability that a specific location has exactly 
30 coverage? 

n  λ=30 dpois(30,λ)=dpois(30,30)=0.072 
n  What is the probability that a specific location 

has at least 30 coverage? 
n  1-ppois(29,λ)=1-ppois(29,30)=0.524 
n  What is the probability that a specific location 

has at least 10 coverage? 
n  1-ppois(9,30)=0.9999929 



Coverage examples 
n  For human genome (L=3,000,000,000) 

sequenced at 30x coverage, what is the 
probability that a specific location has exactly 
one read spanning it? 

n  λ=30 dpois(1,λ)=2.9x10-12 

n  What is the probability that a specific location 
has at least 6 coverage? 

n  λ=30 1-ppois(5,λ)=.99999 

n  How many positions in the genome have less 
then 6 coverage ? 

n  3,000,000,000*ppois(5,λ)=67.7 



Diploid Coverage 

n  Since humans have 2 chromosomes each 
read comes from one chromosome at 
random.  If a position in the reference is 
covered by Y reads, the probability that X of 
the reads come from the first chromosome 
follows the binomial distribution with 
parameter .5. 
¨  dbinom(X,Y,0.5) 

n  At least X coverage for each chromosome 
out of Y reads 

€ 

dbinom(i,Y,0.5)
i=X

Y −X

∑



Binomial Distribution 

n  Discrete probability distribution to compute 
probability of having X successes in Y trials 

n  Example: What’s the probability of having k 
heads in n tosses with fair coin (p = 0.5)? 

n  Probability Mass Function 

n  Mean = n*p 
n  Variance = n*p*(1–p) 
  € 

n
k
" 

# 
$ 
% 

& 
' pk (1− p)n−k



Diploid Coverage Examples 
n  If a position is covered by 10 reads, what is the 

probability that exactly 3 reads come from the 
first chromosome? 

n  dbinom(3,10,.5)=.117 

n  If a position is covered by 10 reads, what is the 
probability that at least 4 reads come from the 
first chromosome? 

n  1-pbinom(3,10,.5)=.828 

n  If a position is covered by 10 reads, what is the 
probability that at least 4 reads come from each 
chromosome? 

n  dbinom(4,10,.5)+dbinom(5,10,.5)+dbinom(6,10,.5)=.656 



Minimum Diploid Coverage 

n  If we want the sequence coverage is λ=M/N, 
the portion of the genome that has at least X 
coverage of each chromosome is 

€ 

dpois(i,λ) dbinom( j,i,0.5)
j=X

i−X

∑
i= 2X

∞

∑



Diploid Coverage Examples 
n  If genome is covered with coverage 30, what is 

the probability that a position will have at least 
10 reads from each chromosome? 

dpois(i,30) dbinom(j, i, 0.5)
j=10

i−10

∑
i=20

∞

∑



SNP Calling 

n  Inferring single base differences from 
sequencing. 

n  Several challenges: 
¨  Sequencing errors 
¨  Alignment “mapping” problems 
¨  Statistical Uncertainty 



SNP Calling Standard 
Approaches 

n  Consensus Algorithm 
¨  Map reads to genome 
¨  Place read in best mapping position (randomly break ties) 
¨  SNP call is based on majority vote. 

n  Probabilistic Algorithm 
¨  Map reads to genome 
¨  Place read in best mapping position (randomly break ties) 
¨  Compute “posterior probablility” 

n  Mapping uncertainty methods 
¨  Map reads to genome 
¨  Record mapping uncertainty 
¨  Compute “posterior probability” incorporating mapping 

uncertainty 



Sequencing Errors 
n  Each sequence read can have some random 

errors. 

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
My	
  Genome:	
  

TCGACATGAGATCGGTAGAACCGT	
  
A	
  Sequence	
  Read:	
  

TACATGAGATCGACATGAGATCGGTAGAACCGTGAGATC	
  
Recovered	
  Sequence:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

TCGACATGAGATCGGTAGAACCGT	
  



Consensus Algorithm 
n  Take majority vote. 

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC	
  
My	
  Genome:	
  

TCGACATGAGATCGGTAGAACCGT!
GACAAGAGATCGGTAGAGCCGTGA!
TGAGATCGGTAGAGCCGTGAGATC!
	
  

Sequence	
  Reads:	
  

TACATGAGATCGACATGAGATCGGTAGAACCGTGAGATC	
  
Recovered	
  Sequence:	
  

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC	
  
The	
  Human	
  Genome:	
  

      TCGACATGAGATCGGTAGAACCGT!
        GACAAGAGATCGGTAGAGCCGTGA!
            TGAGATCGGTAGAGCCGTGAGATC!
	
  



How much coverage do we 
need? 
n  If error rate is e, and we are going to predict 

the consensus sequence, what is the error rate 
if the coverage is X. 

n  We will make a prediction with an error more 
than X/2-1 out of the X reads have an error in 
the same place.   

n  1-pbinom(X/2,X,e) 



How much coverage do we 
need? 
n  If error rate is e, and we are going to predict 

the consensus sequence, what is the error 
rate if the coverage is 3. 

n  We will make a prediction with an error if two 
out of our three reads have an error in the 
same place.   

n  This is approximately 3e2. 

pbinom(2,3,e) = e3 + 3
2
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Diploid Sequencing 

n  Humans have 2 chromosomes. 
n  Each chromosome may have a different 

SNP. 
n  Some reads come from 1 chromosome, 

some come from other chromsome. 
n  Why does consensus method not work? 
n  How do we address this problem? 



Break! 


