
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Graph Algorithms
in Bioinformatics

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Outline

1.  Introduction to Graph Theory
2.  The Hamiltonian & Eulerian Cycle Problems
3.  Basic Biological Applications of Graph Theory
4.  DNA Sequencing
5.  Shortest Superstring & Traveling Salesman Problems
6.  Sequencing by Hybridization
7.  Fragment Assembly & Repeats in DNA
8.  Fragment Assembly Algorithms

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 1:
Introduction to Graph

Theory

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Knight Tours

•  Knight Tour Problem: Given an
8 x 8 chessboard, is it possible to
find a path for a knight that visits
every square exactly once and
returns to its starting square?

•  Note: In chess, a knight may move
only by jumping two spaces in one
direction, followed by a jump one
space in a perpendicular direction.

http://www.chess-poster.com/english/laws_of_chess.htm

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

9th Century: Knight Tours Discovered

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  1759: Berlin Academy of Sciences
proposes a 4000 francs prize for the
solution of the more general problem
of finding a knight tour on an N x N
chessboard.

•  1766: The problem is solved by
Leonhard Euler (pronounced “Oiler”).
•  The prize was never awarded since

Euler was Director of Mathematics
at Berlin Academy and was
deemed ineligible.

18th Century: N x N Knight Tour Problem

Leonhard Euler

http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann.png

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A graph is a collection (V, E) of two sets:
•  V is simply a set of objects, which we

call the vertices of G.
•  E is a set of pairs of vertices which

we call the edges of G.

Introduction to Graph Theory

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A graph is a collection (V, E) of two sets:
•  V is simply a set of objects, which we

call the vertices of G.
•  E is a set of pairs of vertices which

we call the edges of G.

•  Simpler: Think of G as a network:

Introduction to Graph Theory

http://uh.edu/engines/epi2467.htm

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A graph is a collection (V, E) of two sets:
•  V is simply a set of objects, which we

call the vertices of G.
•  E is a set of pairs of vertices which

we call the edges of G.

•  Simpler: Think of G as a network:
•  Nodes = vertices

Introduction to Graph Theory

http://uh.edu/engines/epi2467.htm

Vertex

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A graph is a collection (V, E) of two sets:
•  V is simply a set of objects, which we

call the vertices of G.
•  E is a set of pairs of vertices which

we call the edges of G.

•  Simpler: Think of G as a network:
•  Nodes = vertices
•  Edges = segments connecting the

nodes

Introduction to Graph Theory

http://uh.edu/engines/epi2467.htm

Vertex

Edge

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 2:
The Hamiltonian &

Eulerian Cycle Problems

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Input: A graph G = (V, E)

•  Output: A Hamiltonian cycle in
G, which is a cycle that visits
every vertex exactly once.

•  Example: In 1857, William Rowan
Hamilton asked whether the graph
to the right has such a cycle.

•  Do you see a Hamiltonian cycle?

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Let us form a graph G = (V, E) as
follows:
•  V = the squares of a chessboard
•  E = the set of edges (v, w) where v

and w are squares on the
chessboard and a knight can jump
from v to w in a single move.

•  Hence, a knight tour is just a
Hamiltonian Cycle in this graph!

Knight Tours Revisited

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Theorem: The Hamiltonian Cycle Problem is NP-Complete.

•  This result explains why knight tours were so difficult to find;
there is no known quick method to find them!

Hamiltonian Cycle Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Recall the Traveling Salesman Problem (TSP):
•  n cities
•  Cost of traveling from i to j

is given by c(i, j)
•  Goal: Find the tour of all the

cities of lowest total cost.
•  Example at right: One

busy salesman!

•  So we might like to think of the Hamiltonian Cycle Problem as a
TSP with all costs = 1, where we have some edges missing (there
doesn’t always exist a flight between all pairs of cities).

Hamiltonian Cycle Problem as TSP

http://www.ima.umn.edu/public-lecture/tsp/index.html

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  The city of Konigsberg, Prussia (today: Kaliningrad, Russia)
was made up of both banks of a river, as well as two islands.

•  The riverbanks and the islands were connected with bridges, as
follows:

•  The residents wanted to know if they could take a walk from
anywhere in the city, cross each bridge exactly once, and wind
up where they started.

The Bridges of Konigsberg

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  1735: Enter Euler...his idea: compress each land area down to a
single point, and each bridge down to a segment connecting
two points.

The Bridges of Konigsberg

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  1735: Enter Euler...his idea: compress each land area down to a
single point, and each bridge down to a segment connecting
two points.
•  This is just a graph!

The Bridges of Konigsberg

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  1735: Enter Euler...his idea: compress each land area down to a
single point, and each bridge down to a segment connecting
two points.
•  This is just a graph!

•  What we are looking for,
then, is a cycle in this
graph which covers each
edge exactly once.

The Bridges of Konigsberg

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  1735: Enter Euler...his idea: compress each land area down to a
single point, and each bridge down to a segment connecting
two points.
•  This is just a graph!

•  What we are looking for,
then, is a cycle in this
graph which covers each
edge exactly once.

•  Using this setup, Euler
showed that such a cycle cannot exist.

The Bridges of Konigsberg

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Eulerian Cycle Problem

•  Input: A graph G = (V, E).

•  Output: A cycle in G that touches every edge in E (called an
Eulerian cycle), if one exists.

•  Example: At right is a
demonstration of an
Eulerian cycle.

http://mathworld.wolfram.com/EulerianCycle.html

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Eulerian Cycle Problem

•  Theorem: The Eulerian Cycle Problem can be solved in linear
time.

•  So whereas finding a Hamiltonian cycle quickly becomes
intractable for an arbitrary graph, finding an Eulerian cycle is
relatively much easier.

•  Keep this fact in mind, as it will become essential.

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 3:
Basic Biological Applications

of Graph Theory

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Modeling Hydrocarbons with Graphs

•  Arthur Cayley studied chemical
structures of hydrocarbons in the
mid-1800s.

•  He used trees (acyclic connected
graphs) to enumerate structural
isomers.

Hydrocarbon Structure Arthur Cayley

http://www.scientific-web.com/en/Mathematics/Biographies/ArthurCayley01.html

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

T4 Bacteriophages: Life Finds a Way

•  Normally, the T4 bacteriophage kills
bacteria

•  However, if T4 is mutated (e.g., an
important gene is deleted) it gets
disabled and loses the ability to kill
bacteria

•  Suppose a bacterium is infected with
two different disabled mutants–
would the bacterium still survive?

•  Amazingly, a pair of disabled viruses
can still kill a bacterium.

•  How is this possible? T4 Bacteriophage

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Benzer’s Experiment

•  Seymour Benzer’s Idea: Infect bacteria with pairs of mutant
T4 bacteriophage (virus).

•  Each T4 mutant has an unknown interval deleted from its
genome.

•  If the two intervals overlap: T4 pair
is missing part of its genome and
is disabled—bacteria survive.

•  If the two intervals do not overlap:
T4 pair has its entire genome and
is enabled – bacteria are killed.

http://commons.wikimedia.org/wiki/File:Seymour_Benzer.gif

Seymour Benzer

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Benzer’s Experiment: Illustration

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Benzer’s Experiment and Graph Theory

•  We construct an interval graph:
•  Each T4 mutant forms a vertex.
•  Place an edge between mutant pairs where bacteria survived

(i.e., the deleted intervals in the pair of mutants overlap)

•  As the next slides show, the interval graph structure reveals
whether DNA is linear or branched.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Linear Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interval Graph: Branched Genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Linear Genome Branched Genome

Linear vs. Branched Genomes: Interval Graphs

•  Simply by comparing the structure of the two interval graphs,
Benzer showed that genomes cannot be branched!

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 4:
DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Sanger Method (1977):
Labeled ddNTPs terminate
DNA copying at random
points.

•  Both methods generate labeled
fragments of varying lengths
that are further electrophoresed.

•  Gilbert Method (1977):
Chemical method to cleave
DNA at specific points (G,
G+A, T+C, C).

DNA Sequencing: History

Frederick Sanger Walter Gilbert

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sanger Method: Generating Read

1. Start at primer
(restriction site).

2. Grow DNA chain.
3.  Include ddNTPs.
4. Stop reaction at all

possible points.
5. Separate products

by length, using
gel electrophoresis.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sanger Method: Sequencing

•  Shear DNA into millions of
small fragments.

•  Read 500 – 700 nucleotides
at a time from the small
fragments.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fragment Assembly

•  Computational Challenge: assemble individual short
fragments (“reads”) into a single genomic sequence
(“superstring”).

•  Until late 1990s the so called “shotgun fragment assembly” of
the human genome was viewed as an intractable problem,
because it required so much work for a large genome.

•  Our computational challenge leads to the formal problem at
the beginning of the next section.

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 5:
Shortest Superstring &

Traveling Salesman Problems

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shortest Superstring Problem (SSP)

•  Problem: Given a set of strings, find a shortest string that
contains all of them.

•  Input: Strings s1, s2,…., sn

•  Output: A “superstring” s that contains all strings
 s1, s2,…., sn as substrings, such that the length of s is

minimized.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP: Example

•  So our greedy guess of concatenating all the strings together
turns out to be substantially suboptimal (length 24 vs. 10).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP: Example

•  So our greedy guess of concatenating all the strings together
turns out to be substantially suboptimal (length 24 vs. 10).

•  Note: The strings here are just the integers from 1 to 8 in base-2 notation.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SSP: Issues

•  Complexity: NP-complete (in a few slides).

•  Also, this formulation does not take into account the
possibility of sequencing errors, and it is difficult to adapt to
handle that consideration.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given strings si and sj , define overlap(si , sj) as the length of
the longest prefix of sj that matches a suffix of si .

The Overlap Function

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given strings si and sj , define overlap(si , sj) as the length of
the longest prefix of sj that matches a suffix of si .

•  Example:
•  s1 = aaaggcatcaaatctaaaggcatcaaa
•  s2 = aagcatcaaatctaaaggcatcaaa

The Overlap Function

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given strings si and sj , define overlap(si , sj) as the length of
the longest prefix of sj that matches a suffix of si .

•  Example:
•  s1 = aaaggcatcaaatctaaaggcatcaaa
•  s2 = aagcatcaaatctaaaggcatcaaa

 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa

The Overlap Function

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given strings si and sj , define overlap(si , sj) as the length of
the longest prefix of sj that matches a suffix of si .

•  Example:
•  s1 = aaaggcatcaaatctaaaggcatcaaa
•  s2 = aagcatcaaatctaaaggcatcaaa

 aaaggcatcaaatctaaaggcatcaaa
 aaaggcatcaaatctaaaggcatcaaa

•  Therefore, overlap(s1 , s2) = 12.

The Overlap Function

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Why is SSP an NP-Complete Problem?

•  Construct a graph G as follows:
•  The n vertices represent the n strings s1, s2,…., sn.
•  For every pair of vertices si and sj , insert an edge of length

overlap(si, sj) connecting the vertices.

•  Then finding the shortest superstring will correspond to
finding the shortest Hamiltonian path in G.

•  But this is the Traveling Salesman Problem (TSP), which we
know to be NP-complete.
•  Hence SSP must also be NP-Complete!

•  Note: We also need to show that any TSP can be formulated as a SSP (not difficult).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 1

•  Take our previous set of
strings S = {000, 001, 010,
011, 100, 101, 110, 111}.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 1

•  Take our previous set of
strings S = {000, 001, 010,
011, 100, 101, 110, 111}.

•  Then the graph for S is
given at right.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 1

•  Take our previous set of
strings S = {000, 001, 010,
011, 100, 101, 110, 111}.

•  Then the graph for S is
given at right.

•  One minimal Hamiltonian
path gives our previous
superstring, 0001110100.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 1

•  Take our previous set of
strings S = {000, 001, 010,
011, 100, 101, 110, 111}.

•  Then the graph for S is
given at right.

•  One minimal Hamiltonian
path gives our previous
superstring, 0001110100.

•  Check that this works!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

•  S = {ATC, CCA, CAG,
TCC, AGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

•  A minimal Hamiltonian
path gives as shortest
superstring ATCCAGT.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

ATC

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

•  A minimal Hamiltonian
path gives as shortest
superstring ATCCAGT.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

ATCC

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

•  A minimal Hamiltonian
path gives as shortest
superstring ATCCAGT.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

ATCCA

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

•  A minimal Hamiltonian
path gives as shortest
superstring ATCCAGT.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

ATCCAG

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

•  A minimal Hamiltonian
path gives as shortest
superstring ATCCAGT.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing SSP to TSP: Example 2

ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1
1

•  S = {ATC, CCA, CAG,
TCC, AGT}

•  The graph is provided at
right.

•  A minimal Hamiltonian
path gives as shortest
superstring ATCCAGT. ATCCAGT

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 6:
Sequencing By
Hybridization

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  1988: SBH is suggested as an an
alternative sequencing method.
Nobody believes it will ever
work.

•  1991: Light directed polymer
synthesis is developed by Steve
Fodor and colleagues.

•  1994: Affymetrix develops the
first 64-kb DNA microarray.

First microarray
prototype (1989)

First commercial
DNA microarray
prototype w/16,000
features (1994)

500,000 features
per chip (2002)

Sequencing by Hybridization (SBH): History

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Attach all possible DNA probes of length l to a flat surface,
each probe at a distinct known location. This set of probes is
called a DNA array.

•  Apply a solution containing
fluorescently labeled DNA
fragment to the array.

•  The DNA fragment hybridizes
with those probes that are
complementary to substrings
of length l of the fragment.

How SBH Works

Hybridization of a DNA Probe

http://members.cox.net/amgough/Fanconi-genetics-PGD.htm

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How SBH Works

•  Using a spectroscopic
detector, determine
which probes hybridize
to the DNA fragment to
obtain the l–mer
composition of the target
DNA fragment.

•  Reconstruct the sequence
of the target DNA
fragment from the l-mer
composition.

DNA Microarray

http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomics.html

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How SBH Works: Example

•  Say our DNA fragment hybridizes to indicate that it contains
the following substrings: GCAA, CAAA, ATAG, TAGG,
ACGC, GGCA.

•  Then the most logical
explanation is that our
fragment is the shortest
superstring containing
these strings!

•  Here the superstring is:
ATAGGCAAACGC DNA Microarray Interpreted

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

•  For s = TATGGTGC all of the following are equivalent
representations of Spectrum(s, 3):

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

•  For s = TATGGTGC all of the following are equivalent
representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

•  For s = TATGGTGC all of the following are equivalent
representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC}
 {ATG, GGT, GTG, TAT, TGC, TGG}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

•  For s = TATGGTGC all of the following are equivalent
representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC}
 {ATG, GGT, GTG, TAT, TGC, TGG}
 {TGG, TGC, TAT, GTG, GGT, ATG}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

•  For s = TATGGTGC all of the following are equivalent
representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC}
 {ATG, GGT, GTG, TAT, TGC, TGG}
 {TGG, TGC, TAT, GTG, GGT, ATG}
•  Which ordering do we choose?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

l-mer Composition

•  Spectrum(s, l): The unordered multiset of all l-mers in a
string s of length n.

•  The order of individual elements in Spectrum(s, l) does not
matter.

•  For s = TATGGTGC all of the following are equivalent
representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC}
 {ATG, GGT, GTG, TAT, TGC, TGG}
 {TGG, TGC, TAT, GTG, GGT, ATG}
•  Which ordering do we choose? Typically the one that is

lexicographic, meaning in alphabetical order (think of a
phonebook).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Different sequences may share a common spectrum.

•  Example:

Different Sequences, Same Spectrum

�

Spectrum GTATCT, 2() =
Spectrum GTCTAT, 2() =

AT, CT, GT, TA, TC{ }

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The SBH Problem

•  Problem: Reconstruct a string from its l-mer composition

•  Input: A set S, representing all l-mers from an (unknown)
string s.

•  Output: A string s such that Spectrum(s, l) = S

•  Note: As we have seen, there may be more than one correct
answer. Determining which DNA sequence is actually correct
is another matter.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Create a graph G as follows:
•  Create one vertex for each member of S.
•  Connect vertex v to vertex w with a directed edge (arrow)

if the last l – 1 elements of v match the first l – 1 elements
of w.

•  Then a Hamiltonian path in this graph will correspond to a
string s such that Spectrum(s, l)!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S =

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGC

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGT

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGC

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S =

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGGC

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGGCG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGGCGT

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGGCGTG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGGCGTGC

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Hamiltonian Path Approach

•  Example:

 S = {ATG TGG TGC GTG GGC GCA GCG CGT}

•  There are actually two Hamiltonian paths in this graph:
•  Path 1: Gives the string

 S = ATGCGTGGCA
•  Path 2: Gives the string

 S = ATGGCGTGCA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: A Lost Cause?

•  At this point, we should be concerned about using a
Hamiltonian path to solve SBH.

•  After all, recall that SSP was an NP-Complete problem, and
we have seen that an instance of SBH is an instance of SSP.

•  However, note that SBH is actually a specific case of SSP, so
there is still hope for an efficient algorithm for SBH:
•  We are considering a spectrum of only l-mers, and not

strings of any other length.
•  Also, we only are connecting two l-mers with an edge if and

only if the overlap between them is l – 1, whereas before we
connected l-mers if there was any overlap at all.

•  Note: SBH is not NP-Complete since SBH reduces to SSP, but not vice-versa.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  So instead, let us consider a completely different graph G:
•  Vertices = the set of (l – 1)-mers which are substrings of

some l-mer from our set S.
•  v is connected to w with a directed edge if the final l – 2

elements of v agree with the first l – 2 elements of w, and
the union of v and w is in S.

•  Example: S = {ATG, TGG,
TGC, GTG, GGC, GCA,
GCG, CGT}.
•  V = {AT, TG, GG, GC,

GT, CA, CG}.
•  E = shown at right.

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATG

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGG

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGC

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCG

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGT

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTG

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGC

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA

AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATG AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGC AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGCG AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGCGT AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGCGTG AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGCGTGG AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGCGTGGC AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

SBH: Eulerian Path Approach

•  Key Point: A sequence reconstruction will actually correspond
to an Eulerian path in this graph.

•  Recall that an Eulerian path is “easy” to find (one can always
be found in linear time)…so we have found a simple solution
to SBH!

•  In our example, two solutions:
1.  ATGGCGTGCA
2.  ATGCGTGGCA AT

GT CG

CA GC TG

GG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

But…How Do We Know an Eulerian Path Exists?

•  A graph is balanced if for every vertex the number of
incoming edges equals to the number of outgoing edges. We
write this for vertex v as:

 in(v)=out(v)

•  Theorem: A connected graph is Eulerian (i.e. contains an
Eulerian cycle) if and only if each of its vertices is balanced.

•  We will prove this by demonstrating the following:
1.  Every Eulerian graph is balanced.
2.  Every balanced graph is Eulerian.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Every Eulerian Graph is Balanced

•  Suppose we have an Eulerian graph G. Call C the Eulerian
cycle of G, and let v be any vertex of G.

•  For every edge e entering v, we can pair e with an edge leaving
v, which is simply the edge in our cycle C that follows e.

•  Therefore it directly follows that in(v)=out(v) as needed, and
since our choice of v was arbitrary, this relation must hold for
all vertices in G, so we are finished with the first part.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Every Balanced Graph is Eulerian

•  Next, suppose that we have a balanced graph G.

•  We will actually construct an Eulerian cycle in G.

•  Start with an arbitrary vertex v and form a path in G without
repeated edges until we reach a “dead end,” meaning a vertex
with no unused edges leaving it.

•  G is balanced, so every time we enter a
vertex w that isn’t v during the course of
our path, we can find an edge leaving w.
So our dead end is v and we have a cycle.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Every Balanced Graph is Eulerian

•  We have two simple cases for our cycle, which we call C:
1.  C is an Eulerian cycle  G is Eulerian  DONE.
2.  C is not an Eulerian cycle.

•  So we can assume that C is not an
Eulerian cycle, which means that C
contains vertices which have
untraversed edges.

•  Let w be such a vertex, and start a
new path from w. Once again, we
must obtain a cycle, say C’.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Every Balanced Graph is Eulerian

•  Combine our cycles C and C’ into a bigger cycle C* by
swapping edges at w (see figure).

•  Once again, we test C*:
1.  C* is an Eulerian cycle  G is Eulerian  DONE.
2.  C* is not an Eulerian cycle.

•  If C* is not Eulerian, we iterate our
procedure. Because G has a finite
number of edges, we must eventually
reach a point where our current cycle
is Eulerian (Case 1 above). DONE.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A vertex v is semi-balanced if either in(v) = out(v) + 1 or
in(v) = out(v) – 1 .

•  Theorem: A connected graph has an Eulerian path if and only
if it contains at most two semi-balanced vertices and all other
vertices are balanced.
•  If G has no semi-balanced vertices, DONE.
•  If G has two semi-balanced vertices, connect them with a

new edge e, so that the graph G + e is balanced and must be
Eulerian. Remove e from the Eulerian cycle in G + e to
obtain an Eulerian path in G.

•  Think: Why can G not have just one semi-balanced vertex?

Euler’s Theorem: Extension

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Fidelity of Hybridization: It is difficult to detect differences
between probes hybridized with perfect matches and those
with one mismatch.

•  Array Size: The effect of low fidelity can be decreased with
longer l-mers, but array size increases exponentially in l.
Array size is limited with current technology.

•  Practicality: SBH is still impractical. As DNA microarray
technology improves, SBH may become practical in the future.

Some Difficulties with SBH

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Practicality Again: Although SBH is still impractical, it
spearheaded expression analysis and SNP analysis techniques.

•  Practicality Again and Again: In 2007 Solexa (now Illumina)
developed a new DNA sequencing approach that generates so
many short l-mers that they essentially mimic a universal
DNA array.

Some Difficulties with SBH

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 7:
Fragment Assembly &

Repeats in DNA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA

Shake

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA

Shake

DNA fragments

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA

Shake

DNA fragments

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

+

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

+

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

+ =

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

+ =

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

+ =

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Known
location
(restriction
site)

Traditional DNA Sequencing

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Different Types of Vectors

Vector Size of Insert (bp)

Plasmid 2,000 - 10,000

Cosmid 40,000

BAC (Bacterial Artificial
Chromosome) 70,000 - 300,000

YAC (Yeast Artificial
Chromosome)

> 300,000
Not used much

recently

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Electrophoresis Diagrams

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Electrophoresis Diagrams: Hard to Read

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reading an Electropherogram

•  Reading an Electropherogram requires four processes:
1.  Filtering
2.  Smoothening
3.  Correction for length compressions
4.  A method for calling the nucleotides – PHRED

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

Genomic Segment

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

Cut many times at random
(hence shotgun)

Genomic Segment

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

Cut many times at random
(hence shotgun)

Genomic Segment

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

Cut many times at random
(hence shotgun)

Genomic Segment

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

Cut many times at random
(hence shotgun)

Genomic Segment

Get one or two reads from
each segment

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shotgun Sequencing

Cut many times at random
(hence shotgun)

Genomic Segment

Get one or two reads from
each segment

̃500 bp ̃500 bp

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fragment Assembly

•  Cover region with ~7-fold redundancy.

•  Overlap reads and extend to reconstruct the original
genomic region.

Reads

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Read Coverage

•  Length of genomic segment: L
•  Number of reads: n
•  Length of each read: l
•  Define the coverage as: C = n l / L
•  Question: How much coverage is enough?

•  Lander-Waterman Model: Assuming uniform distribution of
reads, C = 10 results in 1 gap in coverage per million
nucleotides.

C

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Repeats: A major problem for fragment assembly.
•  More than 50% of human genome are repeats:

•  Over 1 million Alu repeats (about 300 bp).
•  About 200,000 LINE repeats (1000 bp and longer).

Repeat Repeat Repeat

Challenges in Fragment Assembly

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A Triazzle ® puzzle has only
16 pieces and looks simple.

•  BUT… there are many
repeats!

•  The repeats make it very
difficult to solve.

•  This repetition is what makes
fragment assembly is so
difficult.

DNA Assembly Analogy: Triazzle

http://www.triazzle.com/

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Repeat Type Explanation

•  Low-Complexity DNA (e.g. ATATATATACATA…)

•  Microsatellite repeats (a1…ak)N where k ~ 3-6
 (e.g. CAGCAGTAGCAGCACCAG)

•  Gene Families genes duplicate & then diverge

•  Segmental duplications ~very long, very similar copies

Repeat Classification

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Classification

 Repeat Type Explanation

•  SINE Transposon Short Interspersed Nuclear Elements
 (e.g., Alu: ~300 bp long, 106 copies)

•  LINE Transposon Long Interspersed Nuclear Elements
 ~500 - 5,000 bp long, 200,000 copies

•  LTR retroposons Long Terminal Repeats (~700 bp)
 at each end

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 8:
Fragment Assembly

Algorithms

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Assembly Method: Overlap-Layout-Consensus

•  Assemblers: ARACHNE, PHRAP,
CAP, TIGR, CELERA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Assembly Method: Overlap-Layout-Consensus

•  Assemblers: ARACHNE, PHRAP,
CAP, TIGR, CELERA

•  Three steps:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Assembly Method: Overlap-Layout-Consensus

•  Assemblers: ARACHNE, PHRAP,
CAP, TIGR, CELERA

•  Three steps:
1.  Overlap: Find potentially

overlapping reads.

Overlap

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Assembly Method: Overlap-Layout-Consensus

•  Assemblers: ARACHNE, PHRAP,
CAP, TIGR, CELERA

•  Three steps:
1.  Overlap: Find potentially

overlapping reads.
2.  Layout: Merge reads into

contigs and contigs into
supercontigs.

Layout

Overlap

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Assembly Method: Overlap-Layout-Consensus

•  Assemblers: ARACHNE, PHRAP,
CAP, TIGR, CELERA

•  Three steps:
1.  Overlap: Find potentially

overlapping reads.
2.  Layout: Merge reads into

contigs and contigs into
supercontigs.

3.  Consensus: Derive the DNA
sequence and correct any read
errors.

Consensus
..ACGATTACAATAGGTT..

Layout

Overlap

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Step 1: Overlap

•  Find the best match between the suffix of one read and the
prefix of another.

•  Due to sequencing errors, we need to use dynamic
programming to find the optimal overlap alignment.

•  Apply a filtration method to filter out pairs of fragments that
do not share a significantly long common substring.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

TAGATTACACAGATTAC

TAGATTACACAGATTAC
|||||||||||||||||

T GA

TAGA
| ||

TACA

TAGT
||

Step 1: Overlap

•  Sort all k-mers in reads (k ~ 24).

•  Find pairs of reads sharing a k-mer.

•  Extend to full alignment—throw away if not >95% similar.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A k-mer that appears N times initiates N2 comparisons.

•  For an Alu that appears 106 times, we will have 1012
comparisons – this is too many.

•  Solution: Discard all k-mers that appear more than t ×
Coverage, (t ~ 10)

Step 1: Overlap

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We next create local multiple alignments from the overlapping
reads.

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA

Step 2: Layout

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Step 2: Layout

•  Repeats are a major challenge.

•  Do two aligned fragments really overlap, or are they from two
copies of a repeat?

•  Solution: repeat masking – hide the repeats!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Step 2: Layout

•  Repeats are a major challenge.

•  Do two aligned fragments really overlap, or are they from two
copies of a repeat?

•  Solution: repeat masking – hide the repeats!

•  Masking results in a high rate of misassembly (~20 %).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Step 2: Layout

•  Repeats are a major challenge.

•  Do two aligned fragments really overlap, or are they from two
copies of a repeat?

•  Solution: repeat masking – hide the repeats!

•  Masking results in a high rate of misassembly (~20 %).

•  Misassembly means a lot more work at the finishing step.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Repeats shorter than read length are OK.

•  Repeats with more base pair differences than the sequencing
error rate are OK.

•  To make a smaller portion of the genome appear repetitive, try
to:
•  Increase read length
•  Decrease sequencing error rate

Step 2: Layout

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Step 3: Consensus

•  A consensus sequence is derived from a profile of the
assembled fragments.

•  A sufficient number of reads are required to ensure a
statistically significant consensus.

•  Reading errors are corrected.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Derive multiple alignment from pairwise read alignments.

•  Derive each consensus base by weighted voting.

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Step 3: Consensus

Multiple Alignment

Consensus String

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  A Hamiltonian path in this graph provides a candidate assembly.

•  Each vertex represents a read from the original sequence.
•  Vertices are connected by an edge if they overlap.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So finding an alignment corresponds to finding a Hamiltonian
path in the overlap graph.

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.

•  Note: Finding a Hamiltonian path only looks easy because we
know the optimal alignment before constructing overlap graph.

Overlap Graph: Hamiltonian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  The “overlap-layout-consensus” technique implicitly solves
the Hamiltonian path problem and has a high rate of mis-
assembly.

•  Can we adapt the Eulerian Path approach borrowed from the
SBH problem?

•  Fragment assembly without repeat masking can be done in
linear time with greater accuracy.

EULER Approach to Fragment Assembly

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

Repeat Graph: Eulerian Approach

•  Gluing each repeat edge together
gives a clear progression of the
path through the entire sequence.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

•  Gluing each repeat edge together
gives a clear progression of the
path through the entire sequence.

Repeat Graph: Eulerian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

Repeat Graph: Eulerian Approach

•  Gluing each repeat edge together
gives a clear progression of the
path through the entire sequence.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Repeat Repeat

Repeat Graph: Eulerian Approach

•  Gluing each repeat edge together
gives a clear progression of the
path through the entire sequence.

•  In the repeat graph, an alignment
corresponds to an Eulerian
path…linear time reduction!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat1 Repeat1 Repeat2 Repeat2

•  The repeat graph can
be easily constructed
with any number of
repeats.

Repeat Graph: Eulerian Approach

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat1 Repeat1 Repeat2 Repeat2

Repeat Graph: Eulerian Approach

•  The repeat graph can
be easily constructed
with any number of
repeats.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat1 Repeat1 Repeat2 Repeat2

Repeat Graph: Eulerian Approach

•  The repeat graph can
be easily constructed
with any number of
repeats.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Problem: In previous slides, we have constructed the repeat
graph while already knowing the genome structure.

•  How do we construct the repeat graph just from fragments?

•  Solution: Break the reads into smaller pieces.

?

Making Repeat Graph From Reads Only

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Repeat Sequences: Emulating a DNA Chip

•  A virtual DNA chip allows one to solve the fragment assembly
problem using our SBH algorithm.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Construction of Repeat Graph

•  Construction of repeat graph from k-mers: emulates an
SBH experiment with a huge (virtual) DNA chip.

•  Breaking reads into k-mers: Transforms sequencing data into
virtual DNA chip data.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Error correction in reads: “Consensus first” approach to
fragment assembly.
•  Makes reads (almost) error-free BEFORE the assembly

even starts.

•  Uses reads and mate-pairs to simplify the repeat graph
(Eulerian Superpath Problem).

Construction of Repeat Graph

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  If an error exists in one of the 20-mer reads, the error will be
perpetuated among all of the smaller pieces broken from that
read.

•  However, that error will not be present in the other instances of
the 20-mer read.

•  So it is possible to eliminate most point mutation errors before
reconstructing the original sequence.

Minimizing Errors

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Graph theory has a wide range of applications throughout
bioinformatics, including sequencing, motif finding, protein
networks, and many more.

Graph Theory in Bioinformatics

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Simons, Robert W. Advanced Molecular Genetics
Course, UCLA (2002). http://www.mimg.ucla.edu/
bobs/C159/Presentations/Benzer.pdf!

•  Batzoglou, S. Computational Genomics Course,
Stanford University (2004). http://
www.stanford.edu/class/cs262/handouts.html!

References

