Graph Algorithms in Bioinformatics

Outline

- 1. Introduction to Graph Theory
- 2. The Hamiltonian & Eulerian Cycle Problems
- 3. Basic Biological Applications of Graph Theory
- 4. DNA Sequencing
- 5. Shortest Superstring & Traveling Salesman Problems
- 6. Sequencing by Hybridization
- 7. Fragment Assembly & Repeats in DNA
- 8. Fragment Assembly Algorithms

Section 1: Introduction to Graph Theory

www.bioalgorithms.info

Knight Tours

• Knight Tour Problem: Given an 8 x 8 chessboard, is it possible to find a path for a knight that visits every square exactly once and returns to its starting square?

• Note: In chess, a knight may move only by jumping two spaces in one direction, followed by a jump one space in a perpendicular direction.

http://www.chess-poster.com/english/laws_of_chess.htm

9th Century: Knight Tours Discovered

Mani al-Adli 840 Rudrata 900

18th Century: *N* x *N* Knight Tour Problem

- 1759: Berlin Academy of Sciences proposes a 4000 francs prize for the solution of the more general problem of finding a knight tour on an *N* x *N* chessboard.
- **1766**: The problem is solved by Leonhard Euler (pronounced "*Oiler*").
 - The prize was never awarded since Euler was Director of Mathematics at Berlin Academy and was deemed ineligible.

Leonhard Euler

http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann.png

- A graph is a collection (V, E) of two sets:
 - V is simply a set of objects, which we call the **vertices** of G.
 - E is a set of pairs of vertices which we call the **edges** of G.

- A graph is a collection (V, E) of two sets:
 - V is simply a set of objects, which we call the **vertices** of G.
 - E is a set of pairs of vertices which we call the **edges** of G.
- Simpler: Think of G as a network:

- A graph is a collection (V, E) of two sets:
 - V is simply a set of objects, which we call the **vertices** of G.
 - E is a set of pairs of vertices which we call the **edges** of G.
- Simpler: Think of G as a network:
 - Nodes = vertices

- A graph is a collection (V, E) of two sets:
 - V is simply a set of objects, which we call the **vertices** of G.
 - E is a set of pairs of vertices which we call the **edges** of G.
- Simpler: Think of G as a network:
 - Nodes = vertices
 - Edges = segments connecting the nodes

Section 2: The Hamiltonian & Eulerian Cycle Problems

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

- <u>Input</u>: A graph G = (V, E)
- <u>Output</u>: A **Hamiltonian cycle** in G, which is a cycle that visits every vertex exactly once.
- Example: In 1857, William Rowan Hamilton asked whether the graph to the right has such a cycle.
- Do you see a Hamiltonian cycle?

www.bioalgorithms.info

Knight Tours Revisited

- Let us form a graph G = (V, E) as follows:
 - V = the squares of a chessboard
 - E = the set of edges (v, w) where v and w are squares on the chessboard and a knight can jump from v to w in a single move.
- Hence, a knight tour is just a Hamiltonian Cycle in this graph!

- **Theorem**: The Hamiltonian Cycle Problem is NP-Complete.
- This result explains why knight tours were so difficult to find; there is no known quick method to find them!
Hamiltonian Cycle Problem as TSP

- Recall the Traveling Salesman Problem (TSP):
 - *n* cities
 - Cost of traveling from *i* to *j* is given by c(*i*, *j*)
 - <u>Goal</u>: Find the tour of all the cities of lowest total cost.
 - Example at right: One busy salesman!

• So we might like to think of the Hamiltonian Cycle Problem as a TSP with all costs = 1, where we have some edges missing (there doesn't always exist a flight between all pairs of cities).

http://www.ima.umn.edu/public-lecture/tsp/index.html

- The city of Konigsberg, Prussia (today: Kaliningrad, Russia) was made up of both banks of a river, as well as two islands.
- The riverbanks and the islands were connected with bridges, as follows:

• The residents wanted to know if they could take a walk from anywhere in the city, cross each bridge exactly once, and wind up where they started.

• 1735: Enter Euler...his idea: compress each land area down to a single point, and each bridge down to a segment connecting two points.

- **1735**: Enter Euler...his idea: compress each land area down to a single point, and each bridge down to a segment connecting two points.
 - This is just a graph!

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml

- 1735: Enter Euler...his idea: compress each land area down to a single point, and each bridge down to a segment connecting two points.
 - This is just a graph!
- What we are looking for, then, is a cycle in this graph which covers each edge exactly once.

- 1735: Enter Euler...his idea: compress each land area down to a single point, and each bridge down to a segment connecting two points.
 - This is just a graph!
- What we are looking for, then, is a cycle in this graph which covers each edge exactly once.

• Using this setup, Euler showed that such a cycle cannot exist.

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml

Eulerian Cycle Problem

- <u>Input</u>: A graph G = (V, E).
- <u>Output</u>: A cycle in G that touches every edge in E (called an **Eulerian cycle**), if one exists.
- Example: At right is a demonstration of an Eulerian cycle.

http://mathworld.wolfram.com/EulerianCycle.html

Eulerian Cycle Problem

- **Theorem**: The Eulerian Cycle Problem can be solved in linear time.
- So whereas finding a Hamiltonian cycle quickly becomes intractable for an arbitrary graph, finding an Eulerian cycle is relatively much easier.
- Keep this fact in mind, as it will become essential.

Section 3: Basic Biological Applications of Graph Theory

Methane

Modeling Hydrocarbons with Graphs

- Arthur Cayley studied chemical structures of hydrocarbons in the mid-1800s.
- He used **trees** (acyclic connected graphs) to enumerate structural isomers.

Hydrocarbon Structure

Arthur Cayley

http://www.scientific-web.com/en/Mathematics/Biographies/ArthurCayley01.html

T4 Bacteriophages: Life Finds a Way

- Normally, the T4 bacteriophage kills bacteria
- However, if T4 is mutated (e.g., an important gene is deleted) it gets disabled and loses the ability to kill bacteria
- Suppose a bacterium is infected with two different disabled mutants would the bacterium still survive?
- Amazingly, a pair of disabled viruses can still kill a bacterium.
- How is this possible?

Benzer's Experiment

- Seymour Benzer's Idea: Infect bacteria with pairs of mutant T4 bacteriophage (virus).
- Each T4 mutant has an unknown interval deleted from its genome.
- If the two intervals overlap: T4 pair is missing part of its genome and is disabled—bacteria survive.
- If the two intervals do not overlap: T4 pair has its entire genome and is enabled – bacteria are killed.

Seymour Benzer

http://commons.wikimedia.org/wiki/File:Seymour_Benzer.gif

Benzer's Experiment: Illustration

Benzer's Experiment and Graph Theory

- We construct an **interval graph**:
 - Each T4 mutant forms a vertex.
 - Place an edge between mutant pairs where bacteria survived (i.e., the deleted intervals in the pair of mutants overlap)
- As the next slides show, the interval graph structure reveals whether DNA is *linear* or *branched*.

Interval Graph: Linear Genomes

Interval Graph: Linear Genomes

Interval Graph: Linear Genomes

Linear vs. Branched Genomes: Interval Graphs

Simply by comparing the structure of the two interval graphs, Benzer showed that genomes cannot be branched!

www.bioalgorithms.info

Section 4: DNA Sequencing

DNA Sequencing: History

- Sanger Method (1977): Labeled ddNTPs terminate DNA copying at random points.
- Gilbert Method (1977): Chemical method to cleave DNA at specific points (G, G+A, T+C, C).

• Both methods generate labeled fragments of varying lengths that are further electrophoresed.

Frederick Sanger

Walter Gilbert

Sanger Method: Generating Read

- 1. Start at primer (restriction site).
- 2. Grow DNA chain.
- 3. Include ddNTPs.
- 4. Stop reaction at all possible points.
- 5. Separate products by length, using gel electrophoresis.

Sanger Method: Sequencing

- Shear DNA into millions of small fragments.
- Read 500 700 nucleotides at a time from the small fragments.

Fragment Assembly

- **Computational Challenge:** assemble individual short fragments ("reads") into a single genomic sequence ("superstring").
- Until late 1990s the so called "shotgun fragment assembly" of the human genome was viewed as an intractable problem, because it required so much work for a large genome.
- Our computational challenge leads to the formal problem at the beginning of the next section.

Section 5: Shortest Superstring & Traveling Salesman Problems

Shortest Superstring Problem (SSP)

- <u>Problem:</u> Given a set of strings, find a shortest string that contains all of them.
- <u>Input</u>: Strings s_1, s_2, \ldots, s_n
- <u>Output</u>: A "superstring" s that contains all strings s_1, s_2, \dots, s_n as substrings, such that the length of s is minimized.

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Concatenation 000 001 010 011 100 101 110 111 Superstring

So our greedy guess of concatenating all the strings together \bullet turns out to be substantially suboptimal (length 24 vs. 10).

- So our greedy guess of concatenating all the strings together lacksquareturns out to be substantially suboptimal (length 24 vs. 10).
- Note: The strings here are just the integers from 1 to 8 in base-2 notation. ٠

SSP: Issues

- **Complexity**: NP-complete (in a few slides).
- Also, this formulation does not take into account the possibility of sequencing errors, and it is difficult to adapt to handle that consideration.

Given strings s_i and s_j, define overlap(s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_i.

- Given strings s_i and s_j, define overlap(s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_i.
- Example:
 - s_1 = aaaggcatcaaatctaaaggcatcaaa
 - $s_2 = aagcatcaaatctaaaggcatcaaa$

- Given strings s_i and s_j , define $overlap(s_i, s_j)$ as the length of the longest prefix of s_i that matches a suffix of s_i .
- Example:
 - $s_1 =$ aaaggcatcaaatctaaaggcatcaaa
 - $s_2 = aagcatcaaatctaaaggcatcaaa$

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

- Given strings s_i and s_j , define $overlap(s_i, s_j)$ as the length of the longest prefix of s_i that matches a suffix of s_i .
- Example:
 - s_1 = aaaggcatcaaatctaaaggcatcaaa
 - $s_2 = aagcatcaaatctaaaggcatcaaa$

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

• Therefore, $overlap(s_1, s_2) = 12$.

Why is SSP an NP-Complete Problem?

- Construct a graph G as follows:
 - The *n* vertices represent the *n* strings s_1, s_2, \ldots, s_n .
 - For every pair of vertices s_i and s_j , insert an edge of length *overlap*(s_i , s_j) connecting the vertices.
- Then finding the shortest superstring will correspond to finding the shortest Hamiltonian path in G.
- But this is the **Traveling Salesman Problem** (TSP), which we know to be NP-complete.
 - Hence SSP must also be NP-Complete!
- Note: We also need to show that any TSP can be formulated as a SSP (not difficult).

Take our previous set of strings S = {000, 001, 010, 011, 100, 101, 110, 111}.

- Take our previous set of strings S = {000, 001, 010, 011, 100, 101, 110, 111}.
- Then the graph for S is given at right.

- Take our previous set of strings S = {000, 001, 010, 011, 100, 101, 110, 111}.
- Then the graph for S is given at right.
- One minimal Hamiltonian path gives our previous superstring, 0001110100.

- Take our previous set of strings S = {000, 001, 010, 011, 100, 101, 110, 111}.
- Then the graph for S is given at right.
- One minimal Hamiltonian path gives our previous superstring, 0001110100.
- Check that this works!

• $S = \{ATC, CCA, CAG, TCC, AGT\}$

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.
- A minimal Hamiltonian path gives as shortest superstring ATCCAGT.

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.
- A minimal Hamiltonian path gives as shortest superstring ATCCAGT.

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.
- A minimal Hamiltonian path gives as shortest superstring ATCCAGT.

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.
- A minimal Hamiltonian path gives as shortest superstring ATCCAGT.

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.
- A minimal Hamiltonian path gives as shortest superstring ATCCAGT.

- $S = \{ATC, CCA, CAG, TCC, AGT\}$
- The graph is provided at right.
- A minimal Hamiltonian path gives as shortest superstring ATCCAGT.

ATCCAGT

Section 6: Sequencing By Hybridization

Sequencing by Hybridization (SBH): History

- 1988: SBH is suggested as an an alternative sequencing method. Nobody believes it will ever work.
- **1991:** Light directed polymer synthesis is developed by Steve Fodor and colleagues.
- **1994:** Affymetrix develops the first 64-kb DNA microarray.

First microarray prototype (1989)

First commercial DNA microarray prototype w/16,000 features (1994)

500,000 features per chip (2002)

How SBH Works

- Attach all possible DNA probes of length *l* to a flat surface, each probe at a distinct known location. This set of probes is called a **DNA array**.
- Apply a solution containing fluorescently labeled DNA fragment to the array.
- The DNA fragment hybridizes with those probes that are complementary to substrings of length *l* of the fragment.

http://members.cox.net/amgough/Fanconi-genetics-PGD.htm

How SBH Works

- Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the *l*-mer composition of the target DNA fragment.
- Reconstruct the sequence of the target DNA fragment from the *l*-mer composition.

DNA Microarray

http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomics.html

How SBH Works: Example

- Say our DNA fragment hybridizes to indicate that it contains the following substrings: GCAA, CAAA, ATAG, TAGG, ACGC, GGCA.
- Then the most logical explanation is that our fragment is the shortest superstring containing these strings!
- Here the superstring is: ATAGGCAAACGC

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.
- For *s* = TATGGTGC all of the following are equivalent representations of *Spectrum*(*s*, *3*):

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.
- For s = TATGGTGC all of the following are equivalent representations of *Spectrum*(s, 3): {TAT, ATG, TGG, GGT, GTG, TGC}

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.
- For s = TATGGTGC all of the following are equivalent representations of Spectrum(s, 3): {TAT, ATG, TGG, GGT, GTG, TGC} {ATG, GGT, GTG, TAT, TGC, TGG}

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.
- For s = TATGGTGC all of the following are equivalent representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC, TGG, 4ATG, GGT, GTG, TAT, TGC, TGG}
 {TGG, TGC, TAT, GTG, GGT, ATG}

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.
- For s = TATGGTGC all of the following are equivalent representations of Spectrum(s, 3):

 {TAT, ATG, TGG, GGT, GTG, TGC, TGG;
 {ATG, GGT, GTG, TAT, TGC, TGG;
 {TGG, TGC, TAT, GTG, GGT, ATG;
- Which ordering do we choose?

- *Spectrum*(*s*, *l*): The *unordered* multiset of all *l*-mers in a string *s* of length *n*.
- The order of individual elements in *Spectrum*(*s*, *l*) does not matter.
- For s = TATGGTGC all of the following are equivalent representations of *Spectrum*(s, 3): {TAT, ATG, TGG, GGT, GTG, TGC} {ATG, GGT, GTG, TAT, TGC, TGG}
 - {TGG, TGC, TAT, GTG, GGT, ATG}
- Which ordering do we choose? Typically the one that is *lexicographic*, meaning in alphabetical order (think of a phonebook).

Different Sequences, Same Spectrum

- Different sequences may share a common spectrum.
- Example:

Spectrum(GTATCT, 2) = ${AT, CT, GT, TA, TC}$

The SBH Problem

- Problem: Reconstruct a string from its *l*-mer composition
- <u>Input</u>: A set S, representing all *l*-mers from an (unknown) string s.
- Output: A string s such that Spectrum(s, l) = S
- Note: As we have seen, there may be more than one correct answer. Determining which DNA sequence is actually correct is another matter.

- Create a graph G as follows:
 - Create one vertex for each member of *S*.
 - Connect vertex v to vertex w with a *directed* edge (arrow) if the last l 1 elements of v match the first l 1 elements of w.
- Then a Hamiltonian path in this graph will correspond to a string *s* such that *Spectrum*(*s*, *l*)!

• Example:

• Example:

_	_	_	_	_	-	-	_

• Example:

• Example:

• Example:

 $S = \{ATG \ TGG \ TGC \ GTG \ GGC \ GCA \ GCG \ CGT \}$

• Example:

• Example:

• Example:

 $S = \{ATG \ TGG \ TGC \ GTG \ GGC \ GCA \ GCG \ CGT \}$

• Example:

• Example:

• Example:

• Example:

• Example:

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

There are actually two Hamiltonian paths in this graph: ullet

• Example:

- There are actually two Hamiltonian paths in this graph: •
 - Path 1:

• Example:

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

$$S =$$

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATG

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGC

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCG

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCGT

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCGTG

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCGTGG

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCGTGGC

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCGTGGCA

• Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph: •
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2:

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2: Gives the string

S =
Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2: Gives the string S = ATG

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2: Gives the string S = ATGG

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2: Gives the string S = ATGGC

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2: Gives the string S = ATGGCG

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string

S = ATGCGTGGCA

• Path 2: Gives the string S = ATGGCGT

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string S = ATGCGTGGCA
 - Path 2: Gives the string S = ATGGCGTG

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string S = ATGCGTGGCA
 - Path 2: Gives the string S = ATGGCGTGC

Example:

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$

- There are actually two Hamiltonian paths in this graph:
 - Path 1: Gives the string S = ATGCGTGGCA
 - Path 2: Gives the string S = ATGGCGTGCA

SBH: A Lost Cause?

- At this point, we should be concerned about using a Hamiltonian path to solve SBH.
- After all, recall that SSP was an NP-Complete problem, and we have seen that an instance of SBH is an instance of SSP.
- However, note that SBH is actually a specific case of SSP, so there is still hope for an efficient algorithm for SBH:
 - We are considering a spectrum of only *l*-mers, and not strings of any other length.
 - Also, we only are connecting two *l*-mers with an edge if and only if the overlap between them is *l* – 1, whereas before we connected *l*-mers if there was any overlap at all.
- Note: SBH is not NP-Complete since SBH reduces to SSP, but not vice-versa.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.
- Example: $S = \{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT\}.$

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l*−1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

GG

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

GG

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l*−1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - *v* is connected to *w* with a *directed* edge if the final l-2 elements of *v* agree with the first l-2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l*−1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - v is connected to w with a *directed* edge if the final l-2 elements of v agree with the first l-2 elements of w, and the *union* of v and w is in S.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - *v* is connected to *w* with a *directed* edge if the final l-2 elements of *v* agree with the first l-2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l-2 elements of *v* agree with the first l-2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.
- Example: $S = \{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT\}$.
 - $V = \{AT, TG, GG, GC, GT, CA, CG\}.$
 - E = shown at right.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.
- Example: $S = \{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT\}$.
 - $V = \{AT, TG, GG, GC, GT, CA, CG\}.$
 - E = shown at right.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.
- Example: $S = \{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT\}$.
 - $V = \{AT, TG, GG, GC, GT, CA, CG\}.$
 - E = shown at right.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (*l* − 1)-mers which are substrings of some *l*-mer from our set *S*.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.
- Example: $S = \{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT\}$.
 - $V = \{AT, TG, GG, GC, GT, CA, CG\}.$
 - E = shown at right.

- So instead, let us consider a completely *different* graph G:
 - Vertices = the set of (l 1)-mers which are substrings of some *l*-mer from our set S.
 - *v* is connected to *w* with a *directed* edge if the final l 2 elements of *v* agree with the first l 2 elements of *w*, and the *union* of *v* and *w* is in *S*.
- Example: $S = \{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT\}$.
 - $V = \{AT, TG, GG, GC, GT, CA, CG\}.$
 - E = shown at right.

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 1. ATG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:1. ATGG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 1. ATGGC

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:1. ATGGCG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:1. ATGGCGT

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 1. ATGGCGTGCA

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGC

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGCG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGCGT

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGCGTG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGCGTGG

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGCGTGGC

- **Key Point**: A sequence reconstruction will actually correspond to an *Eulerian* path in this graph.
- Recall that an Eulerian path is "easy" to find (one can always be found in linear time)...so we have found a simple solution to SBH!
- In our example, two solutions:
 - 1. ATGGCGTGCA
 - 2. ATGCGTGGCA

But...How Do We Know an Eulerian Path Exists?

• A graph is **balanced** if for every vertex the number of incoming edges equals to the number of outgoing edges. We write this for vertex *v* as:

in(v) = out(v)

- **Theorem**: A connected graph is *Eulerian* (i.e. contains an Eulerian cycle) if and only if each of its vertices is balanced.
- We will prove this by demonstrating the following:
 - 1. Every Eulerian graph is balanced.
 - 2. Every balanced graph is Eulerian.

Every Eulerian Graph is Balanced

- Suppose we have an Eulerian graph G. Call *C* the Eulerian cycle of G, and let *v* be any vertex of G.
- For every edge *e* entering *v*, we can pair *e* with an edge leaving *v*, which is simply the edge in our cycle *C* that follows *e*.
- Therefore it directly follows that in(v) = out(v) as needed, and since our choice of v was arbitrary, this relation must hold for all vertices in G, so we are finished with the first part.

Every Balanced Graph is Eulerian

- Next, suppose that we have a balanced graph G.
- We will actually *construct* an Eulerian cycle in G.
- Start with an arbitrary vertex *v* and form a path in G without repeated edges until we reach a "dead end," meaning a vertex with no unused edges leaving it.
- G is balanced, so every time we enter a vertex w that isn't v during the course of our path, we can find an edge leaving w. So our dead end is v and we have a *cycle*.

Every Balanced Graph is Eulerian

- We have two simple cases for our cycle, which we call C:
 - 1. C is an Eulerian cycle \rightarrow G is Eulerian \rightarrow DONE.
 - 2. C is not an Eulerian cycle.
- So we can assume that C is not an Eulerian cycle, which means that C contains vertices which have untraversed edges.
- Let *w* be such a vertex, and start a new path from *w*. Once again, we must obtain a cycle, say C'.

Every Balanced Graph is Eulerian

- Combine our cycles C and C' into a bigger cycle C* by swapping edges at *w* (see figure).
- Once again, we test C*:
 - 1. C* is an Eulerian cycle \rightarrow G is Eulerian \rightarrow DONE.
 - 2. C* is not an Eulerian cycle.
- If C* is not Eulerian, we iterate our procedure. Because G has a finite number of edges, we must eventually reach a point where our current cycle is Eulerian (Case 1 above). DONE.

Euler's Theorem: Extension

- A vertex v is **semi-balanced** if either in(v) = out(v) + 1 or in(v) = out(v) - 1.
- **Theorem**: A connected graph has an Eulerian path if and only if it contains at most two semi-balanced vertices and all other vertices are balanced.
 - If G has no semi-balanced vertices, DONE.
 - If G has two semi-balanced vertices, connect them with a new edge *e*, so that the graph G + *e* is balanced and must be Eulerian. Remove *e* from the Eulerian cycle in G + *e* to obtain an Eulerian path in G.
 - **Think**: Why can G not have just one semi-balanced vertex?

Some Difficulties with SBH

- Fidelity of Hybridization: It is difficult to detect differences between probes hybridized with perfect matches and those with one mismatch.
- Array Size: The effect of low fidelity can be decreased with longer *l*-mers, but array size increases exponentially in *l*. Array size is limited with current technology.
- **Practicality:** SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future.

Some Difficulties with SBH

- **Practicality Again**: Although SBH is still impractical, it spearheaded expression analysis and SNP analysis techniques.
- **Practicality Again and Again**: In 2007 Solexa (now Illumina) developed a new DNA sequencing approach that generates so many short *l*-mers that they essentially mimic a universal DNA array.

Section 7: Fragment Assembly & Repeats in DNA

Traditional DNA Sequencing

DNA

Different Types of Vectors

Vector	Size of Insert (bp)
Plasmid	2,000 - 10,000
Cosmid	40,000
BAC (Bacterial Artificial Chromosome)	70,000 - 300,000
YAC (Yeast Artificial Chromosome)	> 300,000 Not used much recently

Electrophoresis Diagrams

Electrophoresis Diagrams: Hard to Read

Reading an Electropherogram

- Reading an Electropherogram requires four processes:
 - Filtering 1.
 - 2. Smoothening
 - 3. Correction for length compressions
 - 4. A method for calling the nucleotides **PHRED**

Genomic Segment

Genomic Segment

Cut many times at random (hence *shotgun*)

Genomic Segment

Genomic Segment

Shotgun Sequencing

Genomic Segment

Shotgun Sequencing

Genomic Segment

- Cover region with ~7-fold redundancy.
- Overlap reads and extend to reconstruct the original genomic region.

- Length of genomic segment: *L*
- Number of reads: *n*
- Length of each read: *l*
- Define the coverage as: C = n l/L
- **Question**: How much coverage is enough?
 - Lander-Waterman Model: Assuming uniform distribution of reads, C = 10 results in 1 gap in coverage per million nucleotides.

Challenges in Fragment Assembly

- Repeats: A major problem for fragment assembly.
- More than 50% of human genome are repeats:
 - Over 1 million Alu repeats (about 300 bp).
 - About 200,000 LINE repeats (1000 bp and longer).

DNA Assembly Analogy: Triazzle

- A Triazzle ® puzzle has only 16 pieces and looks simple.
- BUT... there are many repeats!
- The repeats make it very difficult to solve.
- This repetition is what makes fragment assembly is so difficult.

http://www.triazzle.com/

Repeat Classification Explanation Repeat Type (e.g. ATATATATACATA...) Low-Complexity DNA ٠ $(a_1...a_k)^N$ where k ~ 3-6 Microsatellite repeats (e.g. CAGCAGTAGCAGCACCAG) genes duplicate & then diverge Gene Families

• Segmental duplications ~very long, very similar copies

Repeat Classification

Repeat Type

Explanation

- SINE Transposon
 Short Interspersed Nuclear Elements (e.g., Alu: ~300 bp long, 10⁶ copies)
- LINE Transposon
 Long Interspersed Nuclear Elements
 ~500 5,000 bp long, 200,000 copies
- LTR retroposons
 Long Terminal Repeats (~700 bp) at each end

Section 8: Fragment Assembly Algorithms

• Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

- Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA
- Three steps:

• Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap

- Three steps:
 - **1. Overlap**: Find potentially overlapping reads.

- Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA
- Three steps:
 - **1. Overlap**: Find potentially overlapping reads.
 - 2. Layout: Merge reads into contigs and contigs into supercontigs.

- Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA
- Three steps:
 - **1. Overlap**: Find potentially overlapping reads.
 - 2. Layout: Merge reads into contigs and contigs into supercontigs.
 - **3. Consensus**: Derive the DNA sequence and correct any read errors.

Step 1: Overlap

- Find the best match between the suffix of one read and the prefix of another.
- Due to sequencing errors, we need to use dynamic programming to find the optimal *overlap alignment*.
- Apply a filtration method to filter out pairs of fragments that do not share a significantly long common substring.

Step 1: Overlap

- Sort all *k*-mers in reads $(k \sim 24)$.
- Find pairs of reads sharing a *k*-mer. •
- Extend to full alignment—throw away if not >95% similar. ٠

Step 1: Overlap

- A k-mer that appears N times initiates N^2 comparisons.
- For an *Alu* that appears 10^6 times, we will have 10^{12} • comparisons – this is too many.
- **Solution:** Discard all k-mers that appear more than $t \times t$ • Coverage, $(t \sim 10)$

• We next create local multiple alignments from the overlapping reads.

- Repeats are a major challenge.
- Do two aligned fragments really overlap, or are they from two ulletcopies of a repeat?
- Solution: *repeat masking* hide the repeats! •

- Repeats are a major challenge.
- Do two aligned fragments really overlap, or are they from two ulletcopies of a repeat?
- Solution: *repeat masking* hide the repeats! ۲
- Masking results in a high rate of misassembly (~ 20 %).

- Repeats are a major challenge.
- Do two aligned fragments really overlap, or are they from two • copies of a repeat?
- Solution: *repeat masking* hide the repeats! •
- Masking results in a high rate of misassembly (~ 20 %).
- Misassembly means a lot more work at the finishing step.

- Repeats shorter than read length are OK.
- Repeats with more base pair differences than the sequencing error rate are OK.
- To make a smaller portion of the genome *appear* repetitive, try ٠ to:
 - Increase read length •
 - **Decrease sequencing error rate** ${}^{\bullet}$

Step 3: Consensus

- A consensus sequence is derived from a profile of the assembled fragments.
- A sufficient number of reads are required to ensure a statistically significant consensus.
- Reading errors are corrected.

Step 3: Consensus

- Derive multiple alignment from pairwise read alignments.
- Derive each consensus base by weighted voting.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

 Repeat	Repeat	Repeat	

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

 Repeat	Repeat	Repeat	

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

- Each vertex represents a read from the original sequence.
- Vertices are connected by an edge if they overlap.

A Hamiltonian path in this graph provides a candidate assembly.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NPullet*Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is NP-۲ *Complete*: no efficient algorithms are known.

- So finding an alignment corresponds to finding a Hamiltonian path in the overlap graph.
- Recall that the Hamiltonian path/cycle problem is *NP*-*Complete*: no efficient algorithms are known.

• Note: Finding a Hamiltonian path only looks easy because we know the optimal alignment before constructing overlap graph.

EULER Approach to Fragment Assembly

- The "overlap-layout-consensus" technique implicitly solves the Hamiltonian path problem and has a high rate of misassembly.
- Can we adapt the Eulerian Path approach borrowed from the SBH problem?
- Fragment assembly without repeat masking can be done in linear time with greater accuracy.

• Gluing each repeat edge together gives a clear progression of the path through the entire sequence.

• The repeat graph can be easily constructed with any number of repeats.

• The repeat graph can be easily constructed with any number of repeats.

• The repeat graph can be easily constructed with any number of repeats.

Making Repeat Graph From Reads Only

- **Problem**: In previous slides, we have constructed the repeat graph while *already knowing* the genome structure.
- How do we construct the repeat graph just from fragments?

Solution: Break the reads into smaller pieces.

Repeat Sequences: Emulating a DNA Chip

• A virtual DNA chip allows one to solve the fragment assembly problem using our SBH algorithm.

Construction of Repeat Graph

- **Construction of repeat graph from** *k***-mers**: emulates an SBH experiment with a huge (virtual) DNA chip.
- **Breaking reads into** *k***-mers**: Transforms sequencing data into virtual DNA chip data.

Construction of Repeat Graph

- Error correction in reads: "Consensus first" approach to fragment assembly.
 - Makes reads (almost) error-free BEFORE the assembly even starts.
- Uses reads and mate-pairs to simplify the repeat graph (Eulerian Superpath Problem).

Minimizing Errors

• If an error exists in one of the 20-mer reads, the error will be perpetuated among all of the smaller pieces broken from that read.

- However, that error will not be present in the other instances of the 20-mer read.
- So it is possible to eliminate most point mutation errors before reconstructing the original sequence.

Graph Theory in Bioinformatics

• Graph theory has a wide range of applications throughout bioinformatics, including sequencing, motif finding, protein networks, and many more.

References

- Simons, Robert W. Advanced Molecular Genetics Course, UCLA (2002). <u>http://www.mimg.ucla.edu/</u> bobs/C159/Presentations/Benzer.pdf
- Batzoglou, S. Computational Genomics Course, Stanford University (2004). http:// www.stanford.edu/class/cs262/handouts.html