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Knight Tours 

•  Knight Tour Problem: Given an 
8 x 8 chessboard, is it possible to 
find a path for a knight that visits 
every square exactly once and 
returns to its starting square? 

•  Note: In chess, a knight may move 
only by jumping two spaces in one 
direction, followed by a jump one 
space in a perpendicular direction.  

http://www.chess-poster.com/english/laws_of_chess.htm 
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9th Century: Knight Tours Discovered 
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•  1759: Berlin Academy of Sciences 
proposes a 4000 francs prize for the 
solution of the more general problem 
of finding a knight tour on an N x N 
chessboard. 

•  1766: The problem is solved by 
Leonhard Euler (pronounced “Oiler”). 
•  The prize was never awarded since 

Euler was Director of Mathematics 
at Berlin Academy and was 
deemed ineligible. 

18th Century: N x N Knight Tour Problem 

Leonhard Euler 

http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann.png 
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•  A graph is a collection (V, E) of two sets: 
•  V is simply a set of objects, which we 

call the vertices of G. 
•  E is a set of pairs of vertices which 

we call the edges of G. 

Introduction to Graph Theory 
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•  A graph is a collection (V, E) of two sets: 
•  V is simply a set of objects, which we 

call the vertices of G. 
•  E is a set of pairs of vertices which 

we call the edges of G. 

•  Simpler: Think of G as a network: 
•  Nodes = vertices 
•  Edges = segments connecting the 

nodes  

Introduction to Graph Theory 

http://uh.edu/engines/epi2467.htm 

Vertex 

Edge 
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•  Input: A graph G = (V, E) 

•  Output: A Hamiltonian cycle in 
G, which is a cycle that visits 
every vertex exactly once. 

Hamiltonian Cycle Problem 
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•  Let us form a graph G = (V, E) as 
follows: 
•  V = the squares of a chessboard 
•  E = the set of edges (v, w) where v 

and w are squares on the 
chessboard and a knight can jump 
from v to w in a single move. 

•  Hence, a knight tour is just a 
Hamiltonian Cycle in this graph! 

Knight Tours Revisited 
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•  Theorem: The Hamiltonian Cycle Problem is NP-Complete. 

•  This result explains why knight tours were so difficult to find; 
there is no known quick method to find them! 

Hamiltonian Cycle Problem 
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•  Recall the Traveling Salesman Problem (TSP): 
•  n cities 
•  Cost of traveling from i to j 

is given by c(i, j) 
•  Goal: Find the tour of all the 

cities of lowest total cost. 
•  Example at right: One 

busy salesman! 

•  So we might like to think of the Hamiltonian Cycle Problem as a 
TSP with all costs = 1, where we have some edges missing (there 
doesn’t always exist a flight between all pairs of cities).  

Hamiltonian Cycle Problem as TSP 

http://www.ima.umn.edu/public-lecture/tsp/index.html 
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•  The city of Konigsberg, Prussia (today: Kaliningrad, Russia) 
was made up of both banks of a river, as well as two islands. 

•  The riverbanks and the islands were connected with bridges, as 
follows: 

•  The residents wanted to know if they could take a walk from 
anywhere in the city, cross each bridge exactly once, and wind 
up where they started. 

The Bridges of Konigsberg 

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml 
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•  1735: Enter Euler...his idea: compress each land area down to a 
single point, and each bridge down to a segment connecting 
two points. 

The Bridges of Konigsberg 
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•  1735: Enter Euler...his idea: compress each land area down to a 
single point, and each bridge down to a segment connecting 
two points. 
•  This is just a graph! 

•  What we are looking for, 
then, is a cycle in this 
graph which covers each 
edge exactly once. 

•  Using this setup, Euler 
showed that such a cycle cannot exist.   

The Bridges of Konigsberg 

http://www.math.uwaterloo.ca/navigation/ideas/Zeno/zenocando.shtml 
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Eulerian Cycle Problem 

•  Input: A graph G = (V, E). 

•  Output: A cycle in G that touches every edge in E (called an 
Eulerian cycle), if one exists. 

•  Example: At right is a 
demonstration of an 
Eulerian cycle. 

http://mathworld.wolfram.com/EulerianCycle.html 
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Eulerian Cycle Problem 

•  Theorem: The Eulerian Cycle Problem can be solved in linear 
time. 

•  So whereas finding a Hamiltonian cycle quickly becomes 
intractable for an arbitrary graph, finding an Eulerian cycle is 
relatively much easier. 

•  Keep this fact in mind, as it will become essential. 
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Section 3: 
Basic Biological Applications 

of Graph Theory 
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Modeling Hydrocarbons with Graphs 

•  Arthur Cayley studied chemical 
structures of hydrocarbons in the 
mid-1800s. 

•  He used trees (acyclic connected 
graphs) to enumerate structural 
isomers. 

Hydrocarbon Structure Arthur Cayley 

http://www.scientific-web.com/en/Mathematics/Biographies/ArthurCayley01.html 
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T4 Bacteriophages: Life Finds a Way 

•  Normally, the T4 bacteriophage kills 
bacteria  

•  However, if T4 is mutated (e.g., an 
important gene is deleted) it gets 
disabled and loses the ability to kill 
bacteria  

•  Suppose a bacterium is infected with 
two different disabled mutants– 
would the bacterium still survive? 

•  Amazingly, a pair of disabled viruses 
can still kill a bacterium.  

•  How is this possible? T4 Bacteriophage 
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Benzer’s Experiment 

•  Seymour Benzer’s Idea: Infect bacteria with pairs of mutant 
T4 bacteriophage (virus). 

•  Each T4 mutant has an unknown interval deleted from its 
genome. 

•  If the two intervals overlap: T4 pair 
is missing part of its genome and 
is disabled—bacteria survive. 

•  If the two intervals do not overlap:  
T4 pair has its entire genome and 
is enabled – bacteria are killed. 

http://commons.wikimedia.org/wiki/File:Seymour_Benzer.gif  

Seymour Benzer 
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Benzer’s Experiment: Illustration 
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Benzer’s Experiment and Graph Theory 

•  We construct an interval graph: 
•  Each T4 mutant forms a vertex. 
•  Place an edge between mutant pairs where bacteria survived 

(i.e., the deleted intervals in the pair of mutants overlap) 

•  As the next slides show, the interval graph structure reveals 
whether DNA is linear or branched. 
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Interval Graph: Linear Genomes 
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Interval Graph: Branched Genomes 
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Linear Genome Branched Genome 

Linear vs. Branched Genomes: Interval Graphs 

•  Simply by comparing the structure of the two interval graphs, 
Benzer showed that genomes cannot be branched!  
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Section 4: 
DNA Sequencing 
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•  Sanger Method (1977): 
Labeled ddNTPs terminate 
DNA copying at random 
points. 

•  Both methods generate labeled 
fragments of varying lengths 
that are further electrophoresed. 

•  Gilbert Method (1977): 
Chemical method to cleave 
DNA at specific points (G, 
G+A, T+C, C). 

DNA Sequencing: History 

Frederick Sanger Walter Gilbert 
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Sanger Method: Generating Read 

1. Start at primer 
(restriction site). 

2. Grow DNA chain. 
3.  Include ddNTPs.  
4. Stop reaction at all 

possible points. 
5. Separate products 

by length, using 
gel electrophoresis. 
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Sanger Method: Sequencing 

•  Shear DNA into millions of 
small fragments. 

•  Read 500 – 700 nucleotides 
at a time from the small 
fragments.  
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Fragment Assembly 

•  Computational Challenge: assemble individual short 
fragments (“reads”) into a single genomic sequence 
(“superstring”).  

•  Until late 1990s the so called “shotgun fragment assembly” of 
the human genome was viewed as an intractable problem, 
because it required so much work for a large genome. 

•  Our computational challenge leads to the formal problem at 
the beginning of the next section. 



www.bioalgorithms.info An Introduction to Bioinformatics Algorithms 

Section 5: 
Shortest Superstring & 

Traveling Salesman Problems  
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Shortest Superstring Problem (SSP) 

•  Problem: Given a set of strings, find a shortest string that 
contains all of them. 

•  Input:  Strings s1, s2,…., sn 

•  Output:  A “superstring” s that contains all strings  
     s1, s2,…., sn as substrings, such that the length of s is 

minimized. 
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•  So our greedy guess of concatenating all the strings together 
turns out to be substantially suboptimal (length 24 vs. 10). 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

SSP: Example 

•  So our greedy guess of concatenating all the strings together 
turns out to be substantially suboptimal (length 24 vs. 10). 

•  Note: The strings here are just the integers from 1 to 8 in base-2 notation. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

SSP: Issues 

•  Complexity:  NP-complete (in a few slides). 

•  Also, this formulation does not take into account the 
possibility of sequencing errors, and it is difficult to adapt to 
handle that consideration. 
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•  Given strings si and sj , define overlap(si , sj ) as the length of 
the longest prefix of sj that matches a suffix of si . 

The Overlap Function 
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•  Given strings si and sj , define overlap(si , sj ) as the length of 
the longest prefix of sj that matches a suffix of si . 

•  Example: 
•  s1 =  aaaggcatcaaatctaaaggcatcaaa 
•  s2 = aagcatcaaatctaaaggcatcaaa 

   aaaggcatcaaatctaaaggcatcaaa 
                                aaaggcatcaaatctaaaggcatcaaa 

•  Therefore, overlap(s1 , s2 ) = 12. 

The Overlap Function 
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Why is SSP an NP-Complete Problem? 

•  Construct a graph G as follows: 
•  The n vertices represent the n strings s1, s2,…., sn. 
•  For every pair of vertices si and sj , insert an edge of length 

overlap( si, sj ) connecting the vertices. 

•  Then finding the shortest superstring will correspond to 
finding the shortest Hamiltonian path in G. 

•  But this is the Traveling Salesman Problem (TSP), which we 
know to be NP-complete. 
•  Hence SSP must also be NP-Complete! 

•  Note: We also need to show that any TSP can be formulated as a SSP (not difficult). 
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Reducing SSP to TSP: Example 1 

•  Take our previous set of 
strings S = {000, 001, 010, 
011, 100, 101, 110, 111}. 
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Reducing SSP to TSP: Example 1 

•  Take our previous set of 
strings S = {000, 001, 010, 
011, 100, 101, 110, 111}. 

•  Then the graph for S is 
given at right. 

•  One minimal Hamiltonian 
path gives our previous 
superstring, 0001110100. 

•  Check that this works! 
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Reducing SSP to TSP: Example 2 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 
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Reducing SSP to TSP: Example 2 
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•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 
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Reducing SSP to TSP: Example 2 
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TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 

•  A minimal Hamiltonian 
path gives as shortest 
superstring ATCCAGT. 
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Reducing SSP to TSP: Example 2 

ATC 

CCA 

TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 

ATC 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 

•  A minimal Hamiltonian 
path gives as shortest 
superstring ATCCAGT. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Reducing SSP to TSP: Example 2 

ATC 

CCA 

TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 

ATCC 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 

•  A minimal Hamiltonian 
path gives as shortest 
superstring ATCCAGT. 
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Reducing SSP to TSP: Example 2 

ATC 

CCA 

TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 

ATCCA 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 

•  A minimal Hamiltonian 
path gives as shortest 
superstring ATCCAGT. 
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Reducing SSP to TSP: Example 2 

ATC 

CCA 

TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 

ATCCAG 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 

•  A minimal Hamiltonian 
path gives as shortest 
superstring ATCCAGT. 
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Reducing SSP to TSP: Example 2 

ATC 

CCA 

TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 

•  S = {ATC, CCA, CAG, 
TCC, AGT} 

•  The graph is provided at 
right. 

•  A minimal Hamiltonian 
path gives as shortest 
superstring ATCCAGT. ATCCAGT 
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Section 6: 
Sequencing By 
Hybridization 
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•  1988:  SBH is suggested as an an 
alternative sequencing method. 
Nobody believes it will ever 
work. 

•  1991:  Light directed polymer 
synthesis is developed by Steve 
Fodor and colleagues.  

•  1994:  Affymetrix develops the 
first 64-kb DNA microarray. 

First microarray  
prototype (1989) 

First commercial 
DNA microarray 
prototype w/16,000 
features (1994) 

500,000 features 
per chip (2002) 

Sequencing by Hybridization (SBH): History 
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•  Attach all possible DNA probes of length l to a flat surface, 
each probe at a distinct known location.  This set of probes is 
called a DNA array. 

•  Apply a solution containing  
fluorescently labeled DNA 
fragment to the array. 

•  The DNA fragment hybridizes 
with those probes that are 
complementary to substrings 
of length l of the fragment. 

How SBH Works 

Hybridization of a DNA Probe 

http://members.cox.net/amgough/Fanconi-genetics-PGD.htm 
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How SBH Works 

•  Using a spectroscopic 
detector, determine 
which probes hybridize 
to the DNA fragment to 
obtain the l–mer 
composition of the target 
DNA fragment. 

•  Reconstruct the sequence 
of the target DNA 
fragment from the l-mer 
composition. 

DNA Microarray 

http://www.wormbook.org/chapters/www_germlinegenomics/germlinegenomics.html 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

How SBH Works: Example 

•  Say our DNA fragment hybridizes to indicate that it contains 
the following substrings: GCAA, CAAA, ATAG, TAGG, 
ACGC, GGCA. 

•  Then the most logical 
explanation is that our 
fragment is the shortest  
superstring containing 
these strings! 

•  Here the superstring is: 
ATAGGCAAACGC DNA Microarray Interpreted 
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 

•  For s = TATGGTGC all of the following are equivalent 
representations of Spectrum( s, 3):    
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 

•  For s = TATGGTGC all of the following are equivalent 
representations of Spectrum( s, 3):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 

•  For s = TATGGTGC all of the following are equivalent 
representations of Spectrum( s, 3):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
       {ATG, GGT, GTG, TAT, TGC, TGG}      
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 

•  For s = TATGGTGC all of the following are equivalent 
representations of Spectrum( s, 3):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
       {ATG, GGT, GTG, TAT, TGC, TGG}      
       {TGG, TGC, TAT, GTG, GGT, ATG} 
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 

•  For s = TATGGTGC all of the following are equivalent 
representations of Spectrum( s, 3):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
       {ATG, GGT, GTG, TAT, TGC, TGG}      
       {TGG, TGC, TAT, GTG, GGT, ATG} 
•  Which ordering do we choose? 
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l-mer Composition 

•  Spectrum( s, l ): The unordered multiset of all  l-mers in a 
string s of length n. 

•  The order of individual elements in  Spectrum( s, l ) does not 
matter. 

•  For s = TATGGTGC all of the following are equivalent 
representations of Spectrum( s, 3):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
       {ATG, GGT, GTG, TAT, TGC, TGG}      
       {TGG, TGC, TAT, GTG, GGT, ATG} 
•  Which ordering do we choose?  Typically the one that is 

lexicographic, meaning in alphabetical order (think of a 
phonebook). 
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•  Different sequences may share a common spectrum. 

•  Example: 

Different Sequences, Same Spectrum 

� 

Spectrum GTATCT, 2( ) =
Spectrum GTCTAT, 2( ) =

AT, CT, GT, TA, TC{ }
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The SBH Problem 

•  Problem: Reconstruct a string from its l-mer composition 

•  Input:  A set S, representing all l-mers from an (unknown) 
string s. 

•  Output:  A string s such that Spectrum( s, l ) = S 

•  Note: As we have seen, there may be more than one correct 
answer.  Determining which DNA sequence is actually correct 
is another matter. 
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SBH: Hamiltonian Path Approach 

•  Create a graph G as follows: 
•  Create one vertex for each member of S. 
•  Connect vertex v to vertex w with a directed edge (arrow) 

if the last l – 1 elements of v match the first l – 1 elements 
of w. 

•  Then a Hamiltonian path in this graph will correspond to a 
string s such that Spectrum( s, l )!  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 
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SBH: Hamiltonian Path Approach  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S =  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATG 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGC 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCG 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGT 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTG 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGG 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGC 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: 
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S =  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATG  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGG  



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGGC  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGGCG  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGGCGT  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGGCGTG  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGGCGTGC  
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SBH: Hamiltonian Path Approach  

•  Example:              

     S = {ATG   TGG    TGC    GTG    GGC    GCA    GCG   CGT} 

•  There are actually two Hamiltonian paths in this graph: 
•  Path 1: Gives the string 

 S = ATGCGTGGCA 
•  Path 2: Gives the string 

 S = ATGGCGTGCA  
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SBH: A Lost Cause? 

•  At this point, we should be concerned about using a 
Hamiltonian path to solve SBH. 

•  After all, recall that SSP was an NP-Complete problem, and 
we have seen that an instance of SBH is an instance of SSP. 

•  However, note that SBH is actually a specific case of SSP, so 
there is still hope for an efficient algorithm for SBH: 
•  We are considering a spectrum of only l-mers, and not 

strings of any other length. 
•  Also, we only are connecting two l-mers with an edge if and 

only if the overlap between them is l – 1, whereas before we 
connected l-mers if there was any overlap at all.     

•  Note: SBH is not NP-Complete since SBH reduces to SSP, but not vice-versa. 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG, GC}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG, GC, 

GT}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG, GC, 

GT, CA}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG, GC, 

GT, CA, CG}. 

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG, GC, 

GT, CA, CG}. 
•  E = shown at right.   

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  So instead, let us consider a completely different graph G: 
•  Vertices = the set of (l – 1)-mers which are substrings of 

some l-mer from our set S. 
•  v is connected to w with a directed edge if the final l – 2 

elements of v agree with the first l – 2 elements of w, and 
the union of v and w is in S. 

•  Example:  S = {ATG, TGG, 
TGC, GTG, GGC, GCA, 
GCG, CGT}. 
•  V = {AT, TG, GG, GC, 

GT, CA, CG}. 
•  E = shown at right.   

AT 

GT CG 

CA GC TG 

GG 
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SBH: Eulerian Path Approach 

•  Key Point: A sequence reconstruction will actually correspond 
to an Eulerian path in this graph. 

•  Recall that an Eulerian path is “easy” to find (one can always 
be found in linear time)…so we have found a simple solution 
to SBH! 

•  In our example, two solutions: 
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But…How Do We Know an Eulerian Path Exists? 

•  A graph is balanced if for every vertex the number of 
incoming edges equals to the number of outgoing edges. We 
write this for vertex v as:  

                                          in(v)=out(v) 

•  Theorem:  A connected graph is Eulerian (i.e. contains an 
Eulerian cycle) if and only if each of its vertices is balanced. 

•  We will prove this by demonstrating the following: 
1.  Every Eulerian graph is balanced. 
2.  Every balanced graph is Eulerian. 
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Every Eulerian Graph is Balanced 

•  Suppose we have an Eulerian graph G.  Call C the Eulerian 
cycle of G, and let v be any vertex of G. 

•  For every edge e entering v, we can pair e with an edge leaving 
v, which is simply the edge in our cycle C that follows e. 

•  Therefore it directly follows that in(v)=out(v) as needed, and 
since our choice of v was arbitrary, this relation must hold for 
all vertices in G, so we are finished with the first part. 
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Every Balanced Graph is Eulerian 

•  Next, suppose that we have a balanced graph G. 

•  We will actually construct an Eulerian cycle in G. 

•  Start with an arbitrary vertex v and form a path in G without 
repeated edges until we reach a “dead end,” meaning a vertex 
with no unused edges leaving it. 

•  G is balanced, so every time we enter a 
vertex w that isn’t v during the course of 
our path, we can find an edge leaving w. 
So our dead end is v and we have a cycle. 
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Every Balanced Graph is Eulerian 

•  We have two simple cases for our cycle, which we call C: 
1.  C is an Eulerian cycle  G is Eulerian   DONE. 
2.  C is not an Eulerian cycle. 

•  So we can assume that C is not an 
Eulerian cycle, which means that C 
contains vertices which have 
untraversed edges. 

•  Let w be such a vertex, and start a 
new path from w.  Once again, we 
must obtain a cycle, say C’. 
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Every Balanced Graph is Eulerian 

•  Combine our cycles C and C’ into a bigger cycle C* by 
swapping edges at w (see figure). 

•  Once again, we test C*: 
1.  C* is an Eulerian cycle  G is Eulerian   DONE. 
2.  C* is not an Eulerian cycle. 

•  If C* is not Eulerian, we iterate our 
procedure.  Because G has a finite 
number of edges, we must eventually 
reach a point where our current cycle 
is Eulerian (Case 1 above).  DONE. 
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•  A vertex v is semi-balanced if either in(v) = out(v) + 1 or 
in(v) = out(v) –  1 .  

•  Theorem:  A connected graph has an Eulerian path if and only 
if it contains at most two semi-balanced vertices and all other 
vertices are balanced. 
•  If G has no semi-balanced vertices, DONE. 
•  If G has two semi-balanced vertices, connect them with a 

new edge e, so that the graph G + e is balanced and must be 
Eulerian.  Remove e from the Eulerian cycle in G + e to 
obtain an Eulerian path in G. 

•  Think: Why can G not have just one semi-balanced vertex? 

Euler’s Theorem: Extension 
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•  Fidelity of Hybridization: It is difficult to detect differences 
between probes hybridized with perfect matches and those 
with one mismatch. 

•  Array Size:  The effect of low fidelity can be decreased with 
longer l-mers, but array size increases exponentially in l.  
Array size is limited with current technology. 

•  Practicality:  SBH is still impractical. As DNA microarray 
technology improves, SBH may become practical in the future. 

Some Difficulties with SBH 
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•  Practicality Again: Although SBH is still impractical, it 
spearheaded expression analysis and SNP analysis techniques. 

•  Practicality Again and Again: In 2007 Solexa (now Illumina) 
developed a new DNA sequencing approach that generates so 
many short l-mers that they essentially mimic a universal 
DNA array. 

Some Difficulties with SBH 
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Different Types of Vectors 

Vector Size of Insert (bp) 

Plasmid 2,000 - 10,000  

Cosmid 40,000 

BAC (Bacterial Artificial 
Chromosome) 70,000 - 300,000 

YAC (Yeast Artificial 
Chromosome) 

> 300,000 
Not used much 

recently 
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Electrophoresis Diagrams 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Electrophoresis Diagrams: Hard to Read 
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Reading an Electropherogram 

•  Reading an Electropherogram requires four processes: 
1.  Filtering 
2.  Smoothening 
3.  Correction for length compressions 
4.  A method for calling the nucleotides – PHRED  
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Shotgun Sequencing 

Genomic Segment 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Shotgun Sequencing 

Cut many times at random 
(hence shotgun) 

Genomic Segment 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Shotgun Sequencing 

Cut many times at random 
(hence shotgun) 

Genomic Segment 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Shotgun Sequencing 

Cut many times at random 
(hence shotgun) 

Genomic Segment 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Shotgun Sequencing 

Cut many times at random 
(hence shotgun) 

Genomic Segment 

Get one or two reads from 
each segment 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Shotgun Sequencing 

Cut many times at random 
(hence shotgun) 

Genomic Segment 

Get one or two reads from 
each segment 

̃500 bp ̃500 bp 
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Fragment Assembly 

•  Cover region with ~7-fold redundancy. 

•  Overlap reads and extend to reconstruct the original 
genomic region. 

Reads 
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Read Coverage 

•  Length of genomic segment:  L 
•  Number of reads:                    n 
•  Length of each read:               l 
•  Define the coverage as:         C = n l / L 
•  Question: How much coverage is enough? 

•  Lander-Waterman Model: Assuming uniform distribution of 
reads, C = 10 results in 1 gap in coverage per million 
nucleotides. 

C 
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•  Repeats:  A major problem for fragment assembly. 
•  More than 50% of human genome are repeats: 

•  Over 1 million Alu repeats (about 300 bp). 
•  About 200,000 LINE repeats (1000 bp and longer). 

Repeat Repeat Repeat 

Challenges in Fragment Assembly 
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•  A Triazzle ® puzzle has only 
16 pieces and looks simple. 

•  BUT… there are many 
repeats! 

•  The repeats make it very 
difficult to solve. 

•  This repetition is what makes 
fragment assembly is so 
difficult. 

DNA Assembly Analogy: Triazzle 

http://www.triazzle.com/ 
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     Repeat Type     Explanation 

•  Low-Complexity DNA (e.g. ATATATATACATA…) 

•  Microsatellite repeats     (a1…ak)N where k ~ 3-6 
     (e.g. CAGCAGTAGCAGCACCAG) 

•  Gene Families   genes duplicate & then diverge 

•  Segmental duplications  ~very long, very similar copies 

Repeat Classification 
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Repeat Classification 

     Repeat Type     Explanation 

•  SINE Transposon  Short Interspersed Nuclear Elements 
     (e.g., Alu: ~300 bp long, 106 copies) 

•  LINE Transposon  Long Interspersed Nuclear Elements 
     ~500 - 5,000 bp long, 200,000 copies 

•  LTR retroposons  Long Terminal Repeats (~700 bp) 
    at each end 
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Fragment Assembly 

Algorithms 
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Assembly Method: Overlap-Layout-Consensus  

•  Assemblers: ARACHNE, PHRAP, 
CAP, TIGR, CELERA 
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Assembly Method: Overlap-Layout-Consensus  

•  Assemblers: ARACHNE, PHRAP, 
CAP, TIGR, CELERA 

•  Three steps: 
1.  Overlap: Find potentially 

overlapping reads. 
2.  Layout: Merge reads into 

contigs and contigs into 
supercontigs. 

3.  Consensus: Derive the DNA 
sequence and correct any read 
errors. 

Consensus 
..ACGATTACAATAGGTT.. 

Layout 

Overlap 
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Step 1: Overlap 

•  Find the best match between the suffix of one read and the 
prefix of another. 

•  Due to sequencing errors, we need to use dynamic 
programming to find the optimal overlap alignment. 

•  Apply a filtration method to filter out pairs of fragments that 
do not share a significantly long common substring. 
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TAGATTACACAGATTAC 

TAGATTACACAGATTAC 
||||||||||||||||| 

T GA 

TAGA 
| || 

TACA 

TAGT 
||   

Step 1: Overlap 

•  Sort all k-mers in reads (k ~ 24). 

•  Find pairs of reads sharing a k-mer. 

•  Extend to full alignment—throw away if not >95% similar.  
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•  A k-mer that appears N times initiates N2 comparisons. 

•  For an Alu that appears 106 times, we will have 1012 
comparisons – this is too many. 

•  Solution: Discard all k-mers that appear more than t × 
Coverage, (t ~ 10) 

Step 1: Overlap 
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•  We next create local multiple alignments from the overlapping 
reads. 

TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAG TTACACAGATTATTGA 
TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAG TTACACAGATTATTGA 
TAGATTACACAGATTACTGA 

Step 2: Layout 
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•  Repeats are a major challenge. 

•  Do two aligned fragments really overlap, or are they from two 
copies of a repeat? 

•  Solution:  repeat masking – hide the repeats! 
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Step 2: Layout 

•  Repeats are a major challenge. 

•  Do two aligned fragments really overlap, or are they from two 
copies of a repeat? 

•  Solution:  repeat masking – hide the repeats! 

•  Masking results in a high rate of misassembly (~20 %). 

•  Misassembly means a lot more work at the finishing step.  
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•  Repeats shorter than read length are OK. 

•  Repeats with more base pair differences than the sequencing 
error rate are OK. 

•  To make a smaller portion of the genome appear repetitive, try 
to: 
•  Increase read length 
•  Decrease sequencing error rate 

Step 2: Layout 
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Step 3: Consensus 

•  A consensus sequence is derived from a profile of the 
assembled fragments. 

•  A sufficient number of reads are required to ensure a 
statistically significant consensus. 

•  Reading errors are corrected. 
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•  Derive multiple alignment from pairwise read alignments. 

•  Derive each consensus base by weighted voting. 

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA 
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 

Step 3: Consensus 

Multiple Alignment 

Consensus String 
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•  Each vertex represents a read from the original sequence. 
•  Vertices are connected by an edge if they overlap. 

Overlap Graph: Hamiltonian Approach 
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Repeat Repeat Repeat 

•  A Hamiltonian path in this graph provides a candidate assembly. 

•  Each vertex represents a read from the original sequence. 
•  Vertices are connected by an edge if they overlap. 

Overlap Graph: Hamiltonian Approach 
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•  So finding an alignment corresponds to finding a Hamiltonian 
path in the overlap graph. 

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.  

Overlap Graph: Hamiltonian Approach 
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•  So finding an alignment corresponds to finding a Hamiltonian 
path in the overlap graph. 

•  Recall that the Hamiltonian path/cycle problem is NP-
Complete: no efficient algorithms are known.  

•  Note: Finding a Hamiltonian path only looks easy because we 
know the optimal alignment before constructing overlap graph.  

Overlap Graph: Hamiltonian Approach 
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•  The “overlap-layout-consensus” technique implicitly solves 
the Hamiltonian path problem and has a high rate of mis-
assembly. 

•  Can we adapt the Eulerian Path approach borrowed from the 
SBH problem? 

•  Fragment assembly without repeat masking can be done in 
linear time with greater accuracy. 

EULER Approach to Fragment Assembly 
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Repeat Repeat Repeat 

Repeat Graph: Eulerian Approach 

•  Gluing each repeat edge together 
gives a clear progression of the 
path through the entire sequence. 
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Repeat Repeat Repeat 

Repeat Graph: Eulerian Approach 

•  Gluing each repeat edge together 
gives a clear progression of the 
path through the entire sequence. 

•  In the repeat graph, an alignment 
corresponds to an Eulerian 
path…linear time reduction! 
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Repeat1 Repeat1 Repeat2 Repeat2 

•  The repeat graph can 
be easily constructed 
with any number of 
repeats. 

Repeat Graph: Eulerian Approach 
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Repeat1 Repeat1 Repeat2 Repeat2 

Repeat Graph: Eulerian Approach 

•  The repeat graph can 
be easily constructed 
with any number of 
repeats. 
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•  Problem: In previous slides, we have constructed the repeat 
graph while already knowing the genome structure. 

•  How do we construct the repeat graph just from fragments? 

•  Solution: Break the reads into smaller pieces. 

? 

Making Repeat Graph From Reads Only 
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Repeat Sequences: Emulating a DNA Chip 

•  A virtual DNA chip allows one to solve the fragment assembly 
problem using our SBH algorithm. 
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Construction of Repeat Graph 

•  Construction of repeat graph from k-mers: emulates an 
SBH experiment with a huge (virtual) DNA chip. 

•  Breaking reads into k-mers: Transforms sequencing data into 
virtual DNA chip data. 
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•  Error correction in reads: “Consensus first” approach to 
fragment assembly. 
•  Makes reads (almost) error-free BEFORE the assembly 

even starts. 

•  Uses reads and mate-pairs to simplify the repeat graph 
(Eulerian Superpath Problem). 

Construction of Repeat Graph 
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•  If an error exists in one of the 20-mer reads, the error will be 
perpetuated among all of the smaller pieces broken from that 
read. 

•  However, that error will not be present in the other instances of 
the 20-mer read. 

•  So it is possible to eliminate most point mutation errors before 
reconstructing the original sequence. 

Minimizing Errors 
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•  Graph theory has a wide range of applications throughout 
bioinformatics, including sequencing, motif finding, protein 
networks, and many more. 

Graph Theory in Bioinformatics 
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