
Reminder	


!  HW 1: Today, must be submitted by a hard copy to TA’s 
office by 6 pm 

!  HW 2: Due April 22 (Tue) 

!  Midterm Review (April 21) 

!  Midterm (April 24) 



Agenda	


!  Association statistic 

!  Statistical Power 

!  Association Power 

!  Relative risk example 

!  Indirect Association 

!  Multiple hypothesis testing 

!  HW1 

!  HW2 



First, Notation (Very important!)	


N =  the number of total individuals

N
2

=  the number of case individuals 

N
2

=  the number of control individuals

p̂A
+ =  Observed case frequency (frequency from data)

p̂A
− =  Observed control frequency (frequency from data)

pA
+ =  True case frequency (never known)

pA
− =  True control frequency (never known)



Allele frequency and its distribution	


!  We have N/2 cases and N/2 controls 

!  Each individual has 2 chromosomes 

!  So, we have N case chromosomes and N control chromosomes 

!  We know the following   

� 

ˆ p A
+ ~ N( pA

+ , pA
+ (1− pA

+ ) /N)
ˆ p A
− ~ N( pA

− , pA
− (1− pA

− ) /N)

Mean	
 Variance	


!  What this says is that the frequency we observe from the data approaches 
to the true frequency when N is large (because variance is small) 



Allele frequency and its distribution	

Jae Hoon 

Sul 

pA
+ = 0.4 and N =100 pA

+ = 0.4 and N =1000



A difference in allele frequency	


!  We have the following rule for the normal distribution 

X ~ N (µX ,σX
2 )  and Y ~ N (µY ,σY

2 ), then

X −Y ~ N (µX − µY ,σX
2 +σY

2 )

Not subtract! Add! (Many mistakes in midterm)	


!  Then, let’s take a difference in observed frequency between cases and controls 

p̂A
+ ~ N ( pA

+ , pA
+ (1− pA

+ ) / N )     p̂A
− ~ N ( pA

− , pA
− (1− pA

− ) / N )

p̂A
+ − p̂A

− ~ N ( pA
+ − pA

− ,( pA
+ (1− pA

+ ) + pA
− (1− pA

− )) / N )



One approximation	


!  We make the following approximation to simplify our variance term 

pA
+ (1− pA

+ ) + pA
− (1− pA

− ) ≈ 2 pA (1− pA )

where pA =
pA
+ + pA

−

2

!  Then, our variance becomes 

p̂A
+ − p̂A

− ~ N ( pA
+ − pA

− ,2 pA (1− pA ) / N )



Normalization (divide by standard 
deviation)	


"  We have the following (another) rule for the normal distribution 

X ~ N (µX ,σ x
2 ),  aX ~ N (aµX ,a2σ x

2 ), 
X
a

~ N
µX
a

,
σ x

2

a2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

"  We want our variance to be 1. How? 

"  Divide whole thing by the standard deviation (square root of variance) 

p̂A
+ − p̂A

− ~ N ( pA
+ − pA

− ,2 pA (1− pA ) / N )

Standard deviation =  (2 pA (1− pA )) / N

p̂A
+ − p̂A

−

(2 p̂A (1− p̂A )) / N
~ N

pA
+ − pA

−

(2 pA (1− pA )) / N
,
2 pA (1− pA ) / N

2 pA (1− pA ) / N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



Normalization (divide by standard 
deviation)	


p̂A
+ − p̂A

−

(2 p̂A (1− p̂A )) / N
~ N

pA
+ − pA

−

(2 pA (1− pA )) / N
,
2 pA (1− pA ) / N
2 pA (1− pA ) / N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
p̂A
+ − p̂A

−

(2 p̂A (1− p̂A )) / N
~ N

pA
+ − pA

−

(2 pA (1− pA )) / N
,1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Hat!	
 No Hat!	


pA =
pA
+ + pA

−

2p̂A =
p̂A
+ + p̂A

−

2



Association Statistic	


SA =
p̂A
+ − p̂A

−

(2 p̂A (1− p̂A )) / N
~ N

pA
+ − pA

−

(2 pA (1− pA )) / N
,1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

If pA
+ − pA

− = 0 (Null Hypothesis), SA =
p̂A
+ − p̂A

−

2/ N p̂A (1− p̂A )
~ N 0,1( )   

If pA
+ − pA

− ≠ 0 (Alt Hypothesis), SA =
p̂A
+ − p̂A

−

2/ N p̂A (1− p̂A )
~ N λA N ,1( )  

where λA =
pA
+ − pA

−

2 pA (1− pA )
, noncentrality-parameter is λA N

When computing p-value of association statistic	


When computing association power	




Association Statistic – Computing p-
value	


"  100 cases, 100 controls, significance threshold α=0.05 

"  Observe 130 A’s in cases and 110 A’s in controls 

� 

ˆ p A
+ = 130

200 = .65 ˆ p A
− = 110

200 = .55 ˆ p A = ˆ p A
+ + ˆ p A

−

2 = .6

� 

SA =
ˆ p + A − ˆ p −A

2 / N ˆ p A (1− ˆ p A )
= .65− .55

2 /200 .6(1− .6)
= 2.04

"  Is this statistic (SA) significant given the significance threshold? 



Association Statistic – Computing p-
value	


"  One way is to find whether SA is in the tail of the normal distribution 

"  First, we find where the significance threshold (α=0.05) is on the standard normal 
distribution   

� 

qnorm computes the value of x when we know Pr(X≤ x), inverse of CDF

Φ−1(α /2) = Φ−1(0.025) = qnorm(0.025) = −1.95

Φ−1(1−0.025) = Φ−1(0.975) = qnorm(0.975) =1.95

-1.95 1.95 

SA= 2.04 

If SA < Φ−1 α
2

⎛
⎝⎜

⎞
⎠⎟

 or SA > −Φ−1 α
2

⎛
⎝⎜

⎞
⎠⎟

 , then significant

In this case, check whether SA < −1.95 or SA >1.95



Association Statistic – Computing p-
value	


"  Another way is to use pnorm in R 

"  pnorm computes Pr (X ≤ SA) or Pr(X > SA) 

"  If SA is positive, p-value = 2*pnorm(2.04, lower.tail=F) = 2*0.021 = 0.042 

"  If SA is negative, p-value = 2*pnorm(-2.04) = 2*0.021 = 0.042 

"  If p-value is less than the significance threshold (α=0.05), it is significant    



Association Statistic – Another example	


"  1000 cases, 1000 controls, significance threshold α=0.05 

"  Observe 1200 A’s in cases and 1100 A’s in controls 

p̂A
+ = 1200

2000
= .6 p̂A

− = 110
2000

= .55 p̂A = p̂
A
+ + p̂

A
−

2
= .575

SA =
p̂+A − p̂

−
A

2/ N p̂A (1− p̂A )
=

.6 − .55

2/2000 .575(1− .575)
= 3.19

"  p-value = 2*pnorm(3.19, lower.tail=F) = 2*0.00071 = 0.00142 

"  This p-value (0.00142) is less than significance threshold (0.05), so 
significant 

Check if SA < Φ−1 α
2

⎛
⎝⎜

⎞
⎠⎟

 or SA > −Φ−1 α
2

⎛
⎝⎜

⎞
⎠⎟

 

In this case, check whether SA < −1.95 or SA >1.95

"  Is this statistic (SA) significant given the significance threshold? 



Statistical Power	


!  So far, we assumed there is no effect (a fair coin, SNP is not associated) and 
computed a p-value 

!  Now, let’s assume that there is an effect; a coin is biased (p = 0.8) 

!  How many times should we toss the coin to find that it is biased? 

!  If toss it a billion times, then surely will find that the coin is biased. 

!  But, we can’t toss it a billion times (we are too lazy) 

!  What if we only toss 100 times? Can we find that the coin is biased? 

!  We say the coin is biased if frequency of heads (or tails) is far from 0.5 

!  If we toss only 100 times, it is possible that sometimes the frequency of heads is not 0.8, but 
close to 0.5 (just by randomness). In this case, we cannot say the coin is biased. 

!  Let’s say we will do this 100 tosses 10 times. And, suppose we know that we will find the 
coin is biased 7 out of 10 times. 

!  Then, the power is 70%  



Statistical Power (More formal 
definition)	


"  The power of a statistical test is the probability that it will correctly lead to the 
rejection of a false null hypothesis (Greene 2000) 

"  The statistical power is the ability of a test to detect an effect, if the effect actually 
exists (High 2000) 

"  Cohen (1988) says, it is the probability that it will result in the conclusion that the 
phenomenon exists 

"  If power is 100%, we will always find that the effect exists (e.g. the coin is biased) 

"  If power is 20%, we will find that the effect exists one out of 5 times 

"  Obviously, we want high power. How can we achieve high power? 



Power of Association Studies	


!  Let’s assume that SNP A is associated with the disease 

pA
+ − pA

− ≠ 0

pA
+ = 0.4      pA

− = 0.3

!  How do we find that SNP A is associated with the disease? 
"  We collect cases and controls and compute association statistic (SA) 
"  If p-value of SA < significance threshold (0.05), we find the association 

!  Can we always find the association? 
" If we repeat the association study (recollect cases and controls), would we again 
find that p-value of SA < significance threshold? 
" If we collect a billion cases and a billion controls for each study, we are sure that 
we will find the association again and again (power = 100%) because   

p̂A
+  pA

+ = 0.4       p̂A
−  pA

− = 0.3



Power of Association Studies	


"  What if we collect only 100 individuals for each study? 

Study #	
 SA	
 p-value	
 Is significant?	


1	
 0.45	
 0.3	
 2.19	
 0.014	
 Yes	


2	
 0.4	
 0.35	
 0.73	
 0.23	
 No	


3	
 0.43	
 0.38	
 0.72	
 0.23	
 No	


4	
 0.42	
 0.27	
 2.23	
 0.012	
 Yes	


5	
 0.44	
 0.29	
 2.20	
 0.013	
 Yes	


p̂A
+ p̂A

−

"  The power is 3 / 5 = 60% 

"  Obviously, we want to detect the association when we collect cases and 
controls and compute association statistic (if it exists)  

"  If there are not enough individuals, we may not detect the association even if 
it exists 



How can we compute power of association studies?	


"  Power of association studies is the area under the alternative distribution for Pr(X >= 
Φ-1(1-α/2)) and Pr (X <= Φ-1(α/2)) where Φ-1 is qnorm   

If pA
+ − pA

− ≠ 0 (Alt Hypothesis), SA =
p̂A
+ − p̂A

−

2/ N p̂A (1− p̂A )
~ N λA N ,1( )  

where λA =
pA
+ − pA

−

2 pA (1− pA )
, noncentrality-parameter is λA N



How can we compute power of association studies?	


� 

λA N

Power of 
association 
test 

Significance 
threshold 

Non-centrality 
parameter 

Φ-1(1-α/2) 
qnorm(1-0.05/2)=1.96	


Φ-1(α/2) 
qnorm(0.05/2)=-1.96	




How can we compute power of association studies?	


Significance 
threshold 
Φ-1(α/2) 

Non-centrality 
parameter 

Significance 
threshold 
Φ-1(1-α/2) 

Positive NCP 
Red area = power	


Negative NCP 
Red area = power	




Power Equation	


Power = Φ(Φ−1(α /2) + λA N )         +   1− Φ(−Φ−1(α /2) + λA N )

= pnorm(qnorm(α/2)+λA N ) +   1− pnorm( − qnorm(α/2)+λA N )

Very Very Important Equation (Memorize for midterm)	




Example of power equation 

Power = pnorm(qnorm(α/2)+λA N )+   1− pnorm( − qnorm(α/2)+λA N )

Let λA N  be 0, then alternative distribution is centered at 0

And, (qnorm(α/2)+λA N ) = −1.96+ 0 = −1.96

So, power = pnorm( −1.96)+1− pnorm(1.96)=0.025+(1-0.025)=0.05



Example of power equation  

What we want to compute 
(area under the curve from the 
significance threshold)  

What we are computing 

pnorm(-1.96)+1-pnorm(1.96) 



Example of power equation 

Power = pnorm(qnorm(α/2)+λA N )+   1− pnorm( − qnorm(α/2)+λA N )

Let λA N  be 1, then alternative distribution is centered at 1

And, (qnorm(α/2)+λA N ) = −1.96+1= −0.96

So, power = pnorm( − 0.96)+1− pnorm(2.96)=0.169+(1-0.998)=0.17



Example of power equation  

CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

What we want to compute 
(area under the curve from the 
significance threshold)  

What we are computing 

pnorm(-0.96)+1-pnorm(2.96) 



Example of power equation 

Power = pnorm(qnorm(α/2)+λA N )+   1− pnorm( − qnorm(α/2)+λA N )

Let λA N  be 2, then alternative distribution is centered at 2

And, (qnorm(α/2)+λA N ) = −1.96+ 2 = 0.04

So, power = pnorm(0.04)+1− pnorm(3.96)=0.516+(1-0.999)=0.516



Example of power equation  
Jae Hoon 

Sul 

What we want to compute 
(area under the curve from the 
significance threshold)  

What we are computing 

pnorm(0.04)+1-pnorm(3.96) 



Example of power equation 

Power = pnorm(qnorm(α/2)+λA N )+   1− pnorm( − qnorm(α/2)+λA N )

Let λA N  be 2, then alternative distribution is centered at 3

And, (qnorm(α/2)+λA N ) = −1.96+ 3 =1.04

So, power = pnorm(1.04)+1− pnorm(4.96)=0.85+(1-0.999)=0.850



Example of power equation  
Jae Hoon 

Sul 

What we want to compute 
(area under the curve from the 
significance threshold)  

What we are computing 

pnorm(1.04)+1-pnorm(4.96) 



More on Power Equation	


!  Three things that affect the power 

1.  Sample size (the total number of individuals) 

2.  Effect size (relative risk of a SNP) 

3.  Significance threshold (α) 

Power = Φ(Φ−1(α /2) + λA N ) +   1− Φ(−Φ−1(α /2) + λA N )

"  Sample Size 
"  Larger N, Larger NCP 
"  NCP shifted further away from 0	


"  Effect Size 
"  Larger relative risk, Larger λA 
"  More difference between p+ and p- 
"  NCP shifted further away from 0 	


"  Significance threshold 
"  Larger α, Higher power 
"  Usually given	




Power Example	


"  Significance threshold α=0.05 

"  Assume true case frequency = 0.6, true control frequency = 0.5 

"  Assume we collect 100 cases and 100 controls   

pA
+ = 0.6   pA

− = 0.5   pA =
pA
+ + pA

−

2
= 0.55   N=200

"  Compute non-centrality parameter 

λA N =
pA
+ − pA

−

2/ N pA (1− pA )
=

0.6 − 0.5

2/200 0.55(1− 0.55)
= 2.01

"  Compute power 
Power = Φ(Φ−1(α /2) + λA N ) +1− Φ(−Φ−1(α /2) + λA N )

= Φ(Φ−1(0.025) + 2.01) +1− Φ(−Φ−1(0.025) + 2.01)
= Φ(−1.95+ 2.01) +1− Φ(1.95+ 2.01)
= Φ(0.06) +1− Φ(3.96) = 0.52+1− 0.9999625 = 0.52



Power Example	


"  Significance threshold α=0.05 

"  Assume true case frequency = 0.6, true control frequency = 0.5 

"  Assume we collect 500 cases and 500 controls   

pA
+ = 0.6   pA

− = 0.5   pA =
pA
+ + pA

−

2
= 0.55   N=1000

"  Compute non-centrality parameter 

λA N =
pA
+ − pA

−

2/ N pA (1− pA )
=

0.6 − 0.5

2/1000 0.55(1− 0.55)
= 4.49

"  Compute power 
Power = Φ(Φ−1(α /2) + λA N ) +1− Φ(−Φ−1(α /2) + λA N )

= Φ(Φ−1(0.025) + 4.49) +1− Φ(−Φ−1(0.025) + 4.49)
= Φ(−1.95+ 4.49) +1− Φ(1.95+ 4.49)
= Φ(2.54) +1− Φ(6.44) = 0.99 +1−1 = 0.99



Relative risk 
#  Effect size of a SNP 

γ = P (+|A)
P (+|¬A)

Relative risk is a ratio between 1) probability 
of having a disease when you have a 
SNP and 2) probability of having a 
disease when you do not have a SNP 



Relative Risk Examples	


"  Assume relative risk = 1.5 

"  Assume disease prevalence (F) is very small (0.001) 

"  Assume allele frequency (pA) is 0.2 (sometimes called “population allele frequency”) 

"  We can then compute true case frequency and true control frequency 

pA
+ =

γ pA
(γ −1) pA +1

=
1.5 * 0.2

(1.5−1) * 0.2+1
= 0.273

pA
− = pA = 0.2

λA =
pA
+ − pA

−

2 pA (1− pA )
,  where pA =

pA
+ + pA

−

2
  I use pA

±  for this pA( )
"  NOTE: this pA is not the same as pA in NCP (λA) 



Relative Risk Examples	


"  Assume relative risk = 2.0 

"  Assume disease prevalence (F) is very small (0.001) 

"  Assume allele frequency (pA) is 0.2 (sometimes called “population allele frequency”) 

"  We can then compute true case frequency and true control frequency 

pA
+ =

γ pA
(γ −1) pA +1

=
2 * 0.2

(2−1) * 0.2+1
= 0.333

pA
− = pA = 0.2

"  A larger difference between true case frequency and true control frequency 

"  This example: 0.333 – 0.2 = 0.133 

"  Previous example: 0.273 – 0.2 = 0.073 

"  Thus, higher power for this example  



HW1 Pr 1 – Part A. Calculating the 
NCP	


Use the formulas described in Lectures 2 & 3 to compute the non-centrality parameters. 
Compute the non-centrality parameters for minor allele frequencies 0.05, 0.2 and 0.4, for 
relative risks of 1.5, 2.0 and 3.0, for total individual numbers in the cases and controls of 
500 and 1000. You must compute the non-centrality parameter using R and show a 
transcript of your code and results. You can enter the results into these tables and include 
them in the homework submission. 



HW1 Pr 1 – Part A. Calculating the 
NCP	


� 

Non - centrality parameter is λA N = pA
+ − pA

−

2pA (1− pA )
N

Given pA  and relative risk (γ ), we can compute 

true case frequency (pA
+ ) and true control frequency (pA

− ) as

pA
+ =

γ pA
(γ −1) pA +1

              pA
− = pA               pA  (in λA ) =

pA
+ + pA

−

2

You can create a R function for NCP like 
ncp = function(gamma, pa, N) { 

 pplus = (gamma*pa)/((gamma-1)*pa+1) 	

 pminus = pa 	


 ppm = (pplus+pminus)/2 	


 lambda = (pplus-pminus)/(sqrt(2*ppm*(1-ppm))) 	

 ncp = lambda*sqrt(N) 	

 return(ncp) 	


} 
> ncp(1.5,0.05,500)	


[1] 1.52396  

One tip: rather than calling this function for 
every pair of allele frequency and relative risk, 
you can use “outer” function in R to compute 
NCP for all relative risks and frequencies. 
Type ?outer in R for help. 



HW1 Pr 1 – Part B. Calculating the 
power	


Now compute the power of these studies assuming a p-value threshold of 0.05. You must 
compute the power using R and show a transcript of your code and results. You should re-
use the R code you wrote for computing non-centrality parameter in Part A. You can enter 
the results into these tables and include them in the homework submission,  



HW1 Pr 1 – Part B. Calculating the 
power	


One tip: rather than calling this function for every pair of allele frequency and relative risk, you can 
use “outer” function in R to compute NCP for all relative risks and frequencies. Type ?outer in R for 
help. 

� 

Power Equation

= Φ(Φ−1(α /2) + λA N ) + 1−Φ(−Φ−1(α /2) + λA N )

= pnorm(qnorm(α/2) +λA N ) + 1− pnorm(−qnorm(α/2) +λA N )

You can create R function for Power like 

power = function(gamma, pa, N) { 

 return(pnorm(qnorm(0.05/2)+ncp(gamma,pa,N))+1-pnorm(-1*qnorm(0.05/2)+ncp(gamma,pa,N))) 

} 
> power(1.5,0.05,500) 

[1] 0.331664 



HW1 Pr 1 – Part C. Calculating # of 
individuals	


Using the same relative risks and minor allele frequencies as in Part A and B, compute the 
number of individuals needed to achieve 80% power for each pair of relative risk and 
minor allele frequency. You should use the R code you wrote for Part B, and try different 
values of the number of individuals to achieve 80% power roughly (79% ~ 81%). You can 
enter the results into these tables and include them in the homework submission, 

"  Try different values for N in the previous power function to achieve 
80% power 



Pr 2 – Unbalanced Cases and Controls 
Part A	


Assume that you have N total individuals in a balanced case and control study (i.e. N/2 
case individuals and N/2 control individuals). The non-centrality parameter for this study is 

On the other hand, if the number of cases and controls are not equal, the non-centrality 
parameter is different. If there are N+/2 cases and N-/2 controls, the non-centrality 
parameter is  

Now assume you are designing a study with three times the number of cases as controls. 
How large does your study have to be (as a factor of N) so that you achieve the same 
power as a balanced study with N individuals? 

� 

λA N

� 

λA
2(N +N−)
N + + N−



Pr 2 – Unbalanced Cases and Controls 
Part A	


� 

In the balanced study, NCP given N total individuals is λA N
In the unbalanced study, let N '  = the total number of individuals

N +

2
= the number of case individuals 

N −

2
= the number of control individuals

N + = the number of case chromosomes N − = the number of control chromosomes

N '   =
N +

2
+
N −

2
,   N + + N − = 2N ',   NCP is λA

2(N + N − )

N + + N −

We have three times the number of cases as control, so N + = 3N −

Re-write N +  and N −  in terms of  N '

Eq 1) 3N − + N − = 2N '  ⇒  4N − = 2N '  ⇒  N − = (1/2)N '

� 

Plug N + and N − into NCP of unbalanced study, and set it equal to NCP of balanced study,

λA N = λA
2(N +N −)
N + +N − = λA

2((3/2)N ' (1/2)N ' )
2N '

Solve for N '  in terms of N

Eq. 2) N + + (1/3)N + = 2N '  ⇒  (4 /3)N + = 2N '  ⇒  N + = (3/2)N '



Pr 2 – Unbalanced Cases and Controls 
Part B	


Assume that you have N+/2 cases and an unlimited number of controls. Derive what the size of 
the balanced study is with equivalent power. (Hint: First solve for the noncentrality parameter if 
you have a very large number of controls, try using 1,000,000)  

In this problem, we have N+ /2 cases and an infinite number of controls

the NCP is λA
(2N + N − )

N + + N −

Similar to Part A, we set NCP of balanced and unbalanced studies equal,

λA N = λA
2(N + N − )

N + + N −

λA N = λA 2N + lim
N −→∞

N −

2N + + N −

What happens to 
N −

2N + + N −
 as N − → ∞?

Then, solve N  in terms of (N + /2),  the number of cases



Pr 2 – Unbalanced Cases and Controls 
Part C	


(Grad Students ONLY) 

Derive the non-centrality parameter for unbalanced cases and controls above. Describe 
the precise approximation assumption you need to make. 

� 

ˆ p A
+ ~ N( pA

+ , pA
+ (1− pA

+ ) / N + )
ˆ p A
− ~ N( pA

− , pA
− (1− pA

− ) / N −)
Taking the difference,

p̂A
+ − p̂A

− ~ N pA
+ − pA

− ,
N − pA

+ (1− pA
+ ) + N + pA

− (1− pA
− )

N + N −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

� 

We use the following approximation

N − pA
+ (1− pA

+ ) +N + pA
− (1− pA

− ) ≈ (N − +N + )( pA (1− pA ))

� 

Divide the equation by the square root of variance term so that variance is 1
Then, after doing some algebraic manipulation, you can show that

NCP is λA
2(N +N −)
N + +N −   � 

ˆ p A
+ − ˆ p A

− ~ N pA
+ − pA

− , (N − + N + ) pA (1− pA )
N +N −

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



Correlation	


#  What is a correlation (in general)? 
! A correlation is a single number that describes the degree of 

relationship between two variables 
!  Ranges from –1.00 to +1.00 (often denoted as r) 

#  Example (GPA vs. TV in hours per week) from (http://www.nvcc.edu/

home/elanthier/methods/correlation.htm) 



Correlation (Linkage Disequilibrium)	


#  Correlation that we consider in class is one between SNPs	


SNP X	
 SNP Y	




Correlation (Linkage Disequilibrium)	


Ind	
 SNP X	
 SNP Y	


1	
 A	
 C	


2	
 A	
 C	


3	
 A	
 C	


4	
 T	
 G	


5	
 T	
 G	


6	
 T	
 G	


7	
 T	
 G	


8	
 T	
 G	


9	
 T	
 G	


10	
 T	
 G	


$  Perfect correlation 

$  If you have A allele in SNP X, you always have 
C allele in SNP Y 

$  If you have T allele in SNP X, you always have 
G allele in SNP Y 

$  SNP X and SNP Y have r = 1 and they are in 
linkage disequilibrium 

$  Implication: we do not need to collect 
information about SNP Y if we collect SNP X 



Correlation (Linkage Disequilibrium)	


Ind	
 SNP X	
 SNP Y	


1	
 A	
 C	


2	
 T	
 G	


3	
 A	
 C	


4	
 T	
 G	


5	
 T	
 G	


6	
 T	
 C	


7	
 A	
 G	


8	
 T	
 G	


9	
 T	
 G	


10	
 T	
 G	


•  r = 0.52 

•  Assume SNP Y is causal, but collect SNP X (why 
not collect Y? we’ll discuss later) 

•  Suppose we collect SNP Y with 1000 individuals 
and we know we achieve 90% power (the probability 
of detecting that SNP Y is associated with a disease) 

•  What would be the power of detecting association 
of Y if we collect SNP X? 

•  Intuitively, the closer X is to Y (higher r), the higher 
power 

•  The more X is different from Y (lower r), the lower 
power  



Indirect Association	


#  Assume we have two SNPs, A and B 
#  B is the causal SNP (two alleles are B and b) 
#  However, we collect A (two alleles are A and a)	




Indirect Association (derivation)	


#  Most difficult problem (in terms of length) in the midterm 
#  One key assumption: conditional probability distributions are 

equal in cases and controls	


  
pA|B
+ = pA|B

− = pA|B

1. Let’s write the true case frequency at SNP A in terms of joint 
probabilities of SNPs A and B	


 pA
+ = pAB

+ + pAb
+

Let’s understand this equation in terms of Venn diagram	




Indirect Association (derivation)	


A	
 B	


A	
 A	
 B	
 A	
 B	


 pA
+ = pAB

+ + pAb
+

 p A( )  p A∩ B( )  p A∩¬B( )= +



Indirect Association (derivation)	


 pA
+ = pAB

+ + pAb
+

2. Use conditional probability	


  

pA|B =
pAB

pB

 ⇔   pAB = pB pA|B

pAb = pb pA|b = (1− pB ) pA|b    because  pb =1− pB

3. Rewrite p+
AB and p-

AB 	


  
pA
+ = pB

+ pA|B + (1− pB
+ ) pA|b

  
pA
− = pB

− pA|B + (1− pB
− ) pA|b

  
Remember:  pA|B

+ = pA|B
− = pA|B



Indirect Association (derivation)	


4. Take a difference between p+
A and p–

A	


  
pA
+ = pB

+ pA|B + (1− pB
+ ) pA|b   

pA
− = pB

− pA|B + (1− pB
− ) pA|b

pA
+ − pA

− = pB
+ pA|B + (1− pB

+ ) pA|b − pB
− pA|B − (1− pB

− ) pA|b

= pB
+ pA|B + pA|b − pB

+ pA|b − pB
− pA|B − pA|b + pB

− pA|b     (expand all terms)

= pB
+ pA|B − pB

− pA|B − pB
+ pA|b + pB

− pA|b                         (pA|b  canceled)

= pA|B ( pB
+ − pB

− ) − pA|b ( pB
+ − pB

− )                                (arrage terms)

= ( pB
+ − pB

− )( pA|B − pA|b )                                            (arrage terms)



Indirect Association (derivation)	


5. Substitute p+
A – p–

A  into λA	


λA =
( pB

+ − pB
− )( pA|B − pA|b )

2 pA (1− pA )

=
( pB

+ − pB
− )( pA|B − pA|b )

2 pA (1− pA )

2 pB (1− pB )

2 pB (1− pB )
       multiply by 

2 pB (1− pB )

2 pB (1− pB )
=1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λA =
pA
+ − pA

−

2 pA (1− pA )
   and   pA

+ − pA
− = ( pB

+ − pB
− )( pA|B − pA|b )

=
( pB

+ − pB
− )

2 pB (1− pB )

( pA|B − pA|b ) 2 pB (1− pB )

2 pA (1− pA )
  (arrange terms)

= λB
( pA|B − pA|b ) 2 pB (1− pB )

2 pA (1− pA )
                  λB =

( pB
+ − pB

− )

2 pB (1− pB )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



Indirect Association (derivation)	


6. Conditional probability again	


pA|B =
pAB
pB

 and  pA|b =
pAb
pb

=
pAb

1− pB
   because  pb =1− pB

λA = λB
( pA|B − pA|b ) 2 pB (1− pB )

2 pA (1− pA )
   

Then	


λA = λB

pAB
pB

−
pAb

1− pB

⎛

⎝⎜
⎞

⎠⎟
2 pB (1− pB )

2 pA (1− pA )
   



Indirect Association (derivation)	


λA = λB

pAB
pB

−
pAb
1− pB

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )
= λB

pAB (1− pB )
pB (1− pB )

−
pAb pB

(1− pB ) pB

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )

Remember  pA = pAB + pAb

= λB

pAB (1− pB ) − pAb pB
pB (1− pB )

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )
= λB

pAB − pAB pB − pAb pB
pB (1− pB )

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )

= λB

pAB − pB ( pAB + pAb )
pB (1− pB )

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )
= λB

pAB − pB pA
pB (1− pB )

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )



Indirect Association (derivation)… 
Finally	


λA = λB

pAB − pB pA
pB (1− pB )

⎛

⎝⎜
⎞

⎠⎟
pB (1− pB )

pA (1− pA )
= λB

pAB − pB pA
pB (1− pB )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

pA (1− pA )

= λB
pAB − pB pA

pB (1− pB ) pA (1− pA )
= λB r2



Indirect Association (example)	


#  Significance threshold α = 0.05 
#  Causal SNP A: true case/control probabilities are 0.6/0.5 
#  Collect SNP B and r2

AB=0.8 
#  Collect 400 case and 400 control individuals 
#  First calculate NCP at the causal SNP (A)	


pA
+ = .6     pA

− = .5     pA =
pA
+ + pA

−

2
= .55     N = 800

λA N =
pA
+ − pA

−

2/ N pA (1− pA )
=

.6 − .5

2/800 .55(1− .55)
= 4.02

λB N = λA N rAB
2 = 4.02 * .8 = 3.56

•  Next calculate NCP at the collected SNP (B)	




Indirect Association (example)	


•  Compute power using NCP of SNP B	


Power = Φ(Φ−1(α /2) + λB N ) +1− Φ(−Φ−1(α /2) + λB N )

= Φ(Φ−1(0.025) + 3.56) +1− Φ(−Φ−1(0.025) + 3.56)
= .95



Multiple testing with SNPs	


#  Each coin corresponds to each SNP 
#  We do not know which SNP causes a disease (we are tying to find 

which SNP causes a disease) 
#  There are more than a million SNPs 
#  If we look at only one SNP (that does not cause a disease), the 

probability that we find the SNP is associated with a disease is 0.05 
(the same as one fair coin) 

#  If we look at a million SNPs (that do not cause a disease), the 
probability that we find any SNP out of a million is associated with 
a disease is much greater than 0.05 (similar to 100 coins)  

#  So, without “multiple hypothesis correction,” we would have a lot of 
false positives	




Multiple Hypothesis Testing 
“Correction”	


#  We want to find a new significance threshold (αs) for 
each SNP such that the overall false positive rate 
(considering M SNPs) is α = 0.05 

#  Two correction methods: Sidak and Bonferroni corrections 
! Sidak correction 

! Bonferroni correction 

! Both have similar values if M is large  	

� 

α s =1− 1−αM

� 

αs = α
M



Multi-SNP Association Example	

Jae Hoon 

Sul 

When testing multiple SNPs, 
remember the multiple  
hypothesis testing	




Multiple Hypothesis Testing Correction	


#  Bonferroni correction assumes that all tests are independent: all 
SNPs or all coins are independent 

#  As you see in the indirect association, SNPs are not 
independent (there is a correlation) 

#  Bonferroni is conservative when SNPs are not independent  
! αs

 from Bonferroni (α / M) < true αs
 that gives overall α 

!  In other words, if we use αs from Bonferroni on correlated SNPs, the 
overall false positive rate would be less than α 

!  Isn’t it a good thing because we have fewer false positives? 
!  It’s good in terms of false positives but not good in terms of power 
!  Remember as the significance threshold decreases, power decreases 
! We need more number of individuals to detect that a SNP is 

associated with a disease if it indeed causes a disease  



Multi-SNP Power analysis	


#  Until now, we considered power of one SNP 
#  We know now how to find the significance threshold when 

we test multiple SNPs 
#  We can then compute power of our association study that 

involves multiple SNPs 
#  In a Multi-SNP power problem, we are given  

!  The number of SNPs (M) 
!  Minor allele frequency of each SNP  
!  Relative risk of a causal SNP 
!  The number of cases and controls 
!  The overall significance threshold 

#  Let’s solve the problem with an example	




Multi-SNP power without Tag SNPs	


#  Assume that we have 5 independent SNPs, 3 have minor allele 
frequency of .4 and 2 have a minor allele frequency of .2.  Assume 
that the relative risk of one of them is 2.0 (we do not know which 
one).  Assume that we are collecting 100 case and 100 control 
individuals.  With α=0.05, what is the power of this association 
study? 

#  4 steps for solving this problem 
%  1. Compute p+

A , p-
A and pA for each MAF using relative risk and MAF  

%  2. Compute NCP for each MAF using p+
A , p-

A, pA and N 

%  3. Compute power for each MAF using NCP and α (don’t forget Bonferroni 
correction!)  

%  4. Average power to compute total power using power of each MAF      



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

Step 1: Compute p+
A , p-

A and pA for each MAF using relative risk 
and MAF 



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

Association Statistics Step 2: Compute NCP for each MAF using p+
A , p-

A, pA and N 



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

Association Statistics Step 3: Compute Power for each MAF using NCP and α (don’t 
forget Bonferroni correction!)  



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

Association Statistics Step 4: Average Power to compute total power using power of each 
MAF 



Tag SNP Selection	


#  HapMap found 1 ~ 2 million SNPs in humans 
#  Turns out that many of them are correlated 
#  It means that we do not need to collect 1 ~ 2 million SNPs 

when we do association study 
! Maybe we only need 0.5 million SNPs, which is cheaper than 

collecting 1 or 2 million SNPs 

#  Tag SNPs are ones that we actually collect in the 
association study 

#  Since we are not collecting all SNPs, tag SNPs should 
cover as many SNPs as possible	




Tag SNP Selection	


"  We are given M SNPs, and correlation between every pair of SNPs 

"  We want to choose a minimum set of SNPs (called “Tag SNPs”) that covers 
every SNP; each SNP is either Tag SNP or has correlation value higher than 
some threshold with Tag SNP 

"  Greedy algorithm chooses SNP that is correlated with the most remaining 
untagged SNPs as Tag SNP until every SNP is either Tag SNP or correlated 
with Tag SNP 

"  Greedy algorithm not optimal, but good performance	




Association Statistics 



Association Statistics 



Association Statistics 



Association Statistics 



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 



Multi-SNP power with Tag SNPs	


"  4 steps for solving this problem 

"  1. Compute p+
A , p-

A and pA for each MAF using 
relative risk and MAF  

"  2. Compute NCP for each Tag SNP using p+
A , p-

A, 
pA,N, and NCP for non-tagged SNP using NCP of Tag 
SNP and its correlation to Tag SNP 

"  3. Compute Power for each SNP using NCP and α 
(don’t forget Bonferroni correction & the number of 
tag SNPs!)  

"  4. Average Power to compute total power using power 
of each SNP      



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 Jae Hoon Sul 

Step 1: Compute p+
A , p-

A and pA for each MAF using relative risk 
and MAF 



CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 

Jae Hoon 
Sul 

CS/HG 124/224 http://genetics.cs.ucla.edu/cs124 Jae Hoon Sul 

Association Statistics Step 2: Compute NCP for each Tag SNP using p+
A , p-

A, pA,N, and NCP for non-tagged 
SNP using NCP of Tag SNP and its correlation to Tag SNP 



Multi-SNP power with Tag SNPs	

Jae Hoon 

Sul 

#  Step 2: compute NCP for non-tagged SNP using NCP of tag SNP 
and its correlation to Tag SNP 

#  NCP at SNP 1 = 3.4 * √0.8 = 3.04 
#  NCP at SNP 2 = 3.4 * √1 = 3.4     (Tag SNP) 
#  NCP at SNP 3 = 3.4 * √0.7 = 2.84 
#  NCP at SNP 4 = 2.9 * √0.8 = 2.59 
#  NCP at SNP 5 = 2.9 * √01 = 2.9    (Tag SNP) 

SNP 1	


SNP 2	


SNP 3	
 SNP 4	


SNP 5	




Multi-SNP power with Tag SNPs	


#  Step 3: Compute Power for each SNP using NCP and α (don’t 
forget Bonferroni correction & the number of tag SNPs) 
!  Since there are 2 tag SNPs, αs = α / 2 = 0.05/2 = 0.025 

 

power at SNP 1= Φ(Φ−1(0.0125) +3.04) +1−Φ(−Φ−1(0.0125) +3.04) = .787

power at SNP 2 = Φ(Φ−1(0.0125) +3.4) +1−Φ(−Φ−1(0.0125) +3.4) = .877

power at SNP 3 = Φ(Φ−1(0.0125) +2.84) +1−Φ(−Φ−1(0.0125) +2.84) = .725

power at SNP 4 = Φ(Φ−1(0.0125) +2.59) +1−Φ(−Φ−1(0.0125) +2.59) = .636

power at SNP 5 = Φ(Φ−1(0.0125) +2.9) +1−Φ(−Φ−1(0.0125) +2.9) = .745

•  Step 4: Average Power to compute total power using power of 
each SNP 
 Total Power = (0.787+0.877+0.725+0.636+0.745)/5 = 0.754 



HW2 Pr 1 – Multiple Hypothesis 
Testing	




HW2 Pr 1 – Multiple Hypothesis 
Testing	


� 

Sidak Correction :   α s = 1− 1−αM

� 

Bonferroni Correction :   α s = α
M

You can create R function for Sidak and Bonferroni like 

sidak	
  =	
  func,on(alpha,M)	
  {	
  
return(1-­‐(1-­‐alpha)^(1/M))	
  

}	
  

bonf	
  =	
  func,on(alpha,M)	
  {	
  

return(alpha/M)	
  
}	
  

Using outer function in R, 

alpha	
  =	
  c(0.05,0.01)	
  
M	
  =	
  c(2,5,10,100,1000)	
  

outer(alpha,M,sidak)	
  	
  

outer(alpha,M,bonf)	
  



HW2 Pr 2 – Tag SNP Selection 
Problem	


Remember 4 steps !	
  



HW2 Pr 2.1 – Computing Power	


Step 1. Compute p+
A , p-

A and pA for each MAF using relative risk and MAF 

pplus	
  =	
  func,on(gamma,p)	
  {	
  

	
  return((gamma*p)/(((gamma-­‐1)*p+1)))	
  

	
  }	
  

Step 2. Compute NCP for each MAF using p+
A , p-

A, pA and N 

ncp	
  =	
  func,on(gamma,p,N)	
  {	
  

pp	
  =	
  pplus(gamma,p)	
  

pa	
  =	
  (pp+p)/2	
  
return((pp-­‐p)/(sqrt(2/N)*sqrt(pa*(1-­‐pa))))	
  

}	
  

� 

pA
+ = γp

(γ −1)p+1
= 2*.3
(2−1).3+1

= .46 pA
− = p = .3 pA =

pA
+ + pA

−

2
= .38

� 

λp= .3 N =
pA

+ − pA
−

2 /N pA (1− pA )
= .46− .3

2 / 200 .38(1− .38)
= 3.32



HW2 Pr 2.1 – Computing Power	

Step 3. Compute Power for each MAF using NCP and α (don’t forget 

Bonferroni correction!)   

power	
  =	
  func,on(gamma,	
  pa,	
  N,	
  alpha,	
  M)	
  {	
  

	
   	
  return(pnorm(qnorm(alpha/M/2)+ncp(gamma,pa,N))+1-­‐pnorm(-­‐1*qnorm(alpha/M/2)+ncp(gamma,pa,N)))	
  
}	
  

Step 4. Average Power to compute total power using power of each MAF  

totalpower	
  =	
  func,on(M1,p1,M2,p2,gamma,N,alpha)	
  {	
  

	
  M	
  =	
  M1+M2	
  
	
  firstpower	
  =	
  power(gamma,p1,N,alpha,M)	
  
	
  secondpower	
  =	
  power(gamma,p2,N,alpha,M)	
  
	
  return((M1*firstpower+M2*secondpower)/M)	
  
	
  }	
  

If α =0.05, then the per-marker threshold using the Bonferroni correction, αs= α/10=0.005 

The power at a SNP with minor allele frequency 0.3 is 

� 

power = Φ(Φ−1(α s / 2)+ λ N )+1− Φ(−Φ−1(α s / 2)+ λ N )

= Φ(Φ−1(0.0025)+ 3.32)+1− Φ(−Φ−1(0.0025)+ 3.32) = .69

� 

total power = 5*.69 + 5*?
10

= ?



HW2 Pr 2.2 – Greedy algorithm	




HW2 Pr 2.2.1 – Finding Tag SNPs	


Out degree count 
1: 2 
2: 3 
3: 4 
4: 4 
5: 5  (highest) 
6: 3 
7: 4 
8: 3 
9: 2 
10: 2 

1	


2	
3	


5	
 4	


6	
7	


9	
 8	


10	


Find the node with the most edges 

Tags	
  5	
  



HW2 Pr 2.2.1 – Finding Tag SNPs	


Out	
  degree	
  count	
  

1:	
  0	
  

7:	
  2	
  

9:	
  1	
  

10:	
  1	
  

Find the node with the most edges 

Tags	
  5,	
  7	
  

1	


7	


9	


10	




HW2 Pr 2.2.1 – Finding Tag SNPs	


Out	
  degree	
  count	
  

1:	
  0	
  

Find the node with the most edges 

Tags	
  5,	
  7,	
  1	
  

1	




HW2 Pr 2.2.2 – Computing Power	


Again 4 steps !	
  

Step 1. Compute p+
A , p-

A and pA for each MAF using relative risk 
and MAF 

 -- We already computed this in problem 2.1   



HW2 Pr 2.2.2 – Computing Power	

Step 2. Compute NCP for each Tag SNP using p+

A , p-
A, pA,N, and NCP for non-tagged 

SNP using NCP of Tag SNP and its correlation to Tag SNP 
-- We already computed NCP for each Tag SNP in problem 2.1 
-- NCP of non-tagged SNP is 
      -- Tag SNPs and correlated SNPs are 

 SNP 1: none 
 SNP 5: 2, 3, 4, 6, 8 
 SNP 7: 9, 10 

	
  	
  	
  	
  	
  	
  	
  -­‐-­‐	
  NCP	
  of	
  correlated	
  SNPs:	
  

	
  NCP	
  of	
  SNP	
  2	
  =	
  NCP	
  of	
  SNP	
  5	
  *	
  0.8	
  

	
  NCP	
  of	
  SNP	
  3	
  =	
  NCP	
  of	
  SNP	
  5	
  *	
  0.9	
  

	
  NCP	
  of	
  SNP	
  4	
  =	
  NCP	
  of	
  SNP	
  5	
  *	
  0.85	
  

	
  NCP	
  of	
  SNP	
  6	
  =	
  NCP	
  of	
  SNP	
  5	
  *	
  0.75	
  

	
  NCP	
  of	
  SNP	
  8	
  =	
  NCP	
  of	
  SNP	
  5	
  *	
  0.75	
  

	
  NCP	
  of	
  SNP	
  9	
  =	
  NCP	
  of	
  SNP	
  7	
  *	
  0.85	
  

	
  NCP	
  of	
  SNP	
  10	
  =	
  NCP	
  of	
  SNP	
  7	
  *	
  0.8	
  

	
  	
  	
  	
  	
  	
  	
  -­‐-­‐	
  Can	
  re-­‐use	
  R	
  code	
  in	
  Pr	
  2.1	
  like	
  

	
  c(0.8,0.9,0.85,0.75,0.75)*	
  ncp(2.0,0.3,200)	
  



HW2 Pr 2.2.2 – Computing Power	


Step 3. Compute Power for each SNP using NCP and α (don’t forget Bonferroni 
correction & the number of tag SNPs!)  
-- Since	
  there	
  are	
  3	
  tags,	
  αS	
  =	
  α/3	
  =	
  0.05/3	
  =	
  0.01666667	
  	
  

� 

power at SNP 1 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP1)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP1))

power at SNP 2 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP2)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP2))

power at SNP 3 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP3)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP3))

power at SNP 4 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP4)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP4))

power at SNP 5 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP5)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP5))

power at SNP 6 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP6)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP6))

power at SNP 7 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP7)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP7))

power at SNP 8 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP8)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP8))

power at SNP 9 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP9)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP9))

power at SNP 10 = Φ(Φ−1(0.05 / 3/ 2) + NCP(SNP10)) + 1− Φ(−Φ−1(0.05 / 3/ 2) + NCP(SNP10))

Step 4. Average Power to compute total power using power of each SNP  
-- Average	
  power	
  of	
  10	
  SNPs	
  	
  

Need to modify R code for power in Pr 2.1	
  



HW2 Pr 2.3 – Optimal algorithm	


Basically the same problem as Pr 2.2, but you need to find the optimal 
solution for Tag SNPs, and its power	
  



HW2 Pr 3 – Indirect Association Study 
Problem	




HW2 Pr 3.1 – Calculating 
Correlation	


The correlation equation is  

> snpA = c(1,0,1,1,0,1,0,1,1,1) 
> snpB = c(1,0,1,0,0,1,1,1,0,1) 
> cor(snpA,snpB)	
  

Or, you can use R to compute correlation. Encode A as 1 and a as 0 
(reverse works too) 

� 

pAB − pA pB
pA (1− pA ) pB (1− pB )

pA = 0.3, pB = 0.4, pAB = 0.2 



HW2 Pr 3.2 – Indirect Association 
Power	


Assume the causal SNP is B, but we collect SNP A. Assume that true 
case probability and and true control probability are 0.4 and 0.5 
respectively at SNP B. If we collect 500 case and 500 control individuals 
and have a significance threshold of 0.05, what is the power at SNP A? 
(Note : Use the correlation that you get from above question)	


First, calculate non-centrality parameter of SNP B 

  

λB N =
pB
+ − pB

−

2/1000 pB (1− pB )
= 0.4 − 0.5

1/500 0.45 * (1− 0.45)

P+
B = 0.4, P-

B = 0.5, PB = (0.4+0.5)/2 = 0.45, N = 1000 

Second, calculate non-centrality parameter of SNP A 

 λA N = r ⋅λB N

Lastly, calculate the power using NCP of SNP A 

  Φ(Φ−1(α /2) + λA N ) +1−Φ(−Φ−1(α /2) + λA N )



HW2 Pr 4 – Association Study with Multiple Disease	


(Grad Students ONLY) 



HW2 Pr 4 – Association Study with Multiple Disease	


- The total number of individuals collected is 7*2,000 + 3,000 = 17,000 individuals 

- The question is, did they collect the right number of cases and controls in this scenario 
under the assumption that the number of cases is the same for all 7 diseases and the 
total number of individuals they collect is 17,000?  

- In other words, does collecting 2,000 cases for each disease and collecting 3,000 
controls maximize the power given the constraint that we collect 17,000 individuals?  

- For example, what if we collect 1,500 cases for each disease (7 * 1500 = 10,500) and 
collect 6,500 controls (17,000 – 10,500 = 6,500). Does this have higher power than 
collecting 2,000 cases and 3,000 controls? 

- If not, how many should they have collected? 

- What if there were only 3 diseases, 10 diseases? 



HW2 Pr 4 – Association Study with Multiple Disease	


� 

In the unbalanced study, remember that NCP is λA
2(N +N − )
N + + N −

� 

λA  does not depend on N+ or N-, so we want to know the value of N+ and N-that maximzes the power

� 

There are several ways for finding the value, and one way is taking derivative

� 

2N +N −

N + + N − = 2N +(34000− 7N + )
N + + 34000− 7N + = 68000N + −14N +2

34000− 6N +

68000N + −14N +2

34000− 6N +

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

d
dN + = numerator

denominator

� 

34000 =  7N + + N −

N − = 34000− 7N +� 

N + + N − = 2N , where N+ is #  of case chromosomes, N- is #  of control chromosomes, N is the total #  of individuals,
and we have 17,000 total individuals, so 34,000 total chromosomes

� 

Set the numerator equal to 0, then solve for N+, then you can solve for N- using N − = 34000− 7N +

� 

Hint :  You can use online math tool (e.g. WolframAlpha) to compute the derivative and to solve N+



HW2 Pr 4 – Association Study with Multiple Disease	


� 

If there are 3 diseases, then we have 3*2000 +3000 =  9000 total individuals. So,

18000 =  3N + + N −

N − = 18000− 3N +

� 

If there are 10 diseases, then we have 10*2000 +3000 =  23000 total individuals. So,

46000 =  10N + + N −

N − = 46000−10N +


