Reminder

HW 1: Today, must be submitted by a hard copy to TA’s
office by 6 pm

HW 2: Due April 22 (Tue)
Midterm Review (April 21)
Midterm (April 24)



Agenda

Association statistic
Statistical Power
Association Power
Relative risk example
Indirect Association

Multiple hypothesis testing
HW1
HW2



First, Notation (Very importantl)

N = the number of total individuals

= the number of case individuals

= the number of control individuals

= Observed case frequency (frequency from data)

?—F o= o=

Iy 4 = Observed control frequency (frequency from data)

pz = 'l'rue case frequency (never known)

p 4, = True control frequency (never known)



Allele frequency and its distribution

We have N/2 cases and N/2 controls
Each individual has 2 chromosomes

So, we have N case chromosomes and N control chromosomes
Py ~N(py.pis(1-p,)/N)
Py~ N(py,py(1—p,)/N)

We know the following

| Mean | |Variance |

What this says is that the frequency we observe from the data approaches
to the true frequency when N is large (because variance is small)
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A difference in allele frequency

We have the following rule for the normal distribution

X ~ N(,LLX, ) and ¥ ~ N(U, ,0 ),then

X-Y ~ N,LLXBuy, X.r

| Not subtract! Add! (Many mistakes in midterm) |

Then, let’s take a difference in observed frequency between cases and controls

by~ Ny U= p3)/ N) - g~ N(pyg, by (1= pg) / N)

Py—by~ Ny = p(0a(0=p)+ p (0= py)/ N)



One approximation

We make the following approximation to simplify our variance term

pil=p)+p1=p)=2p (1= p,)

Pyt by
2

Then, our variance becomes

b=~ N = p2p,0=p )/ N)

where p , =



Normalization (divide by standard

deviation)
e We have the following (another) rule for the normal distribution
2
N 9 N 0o oo X | Hy O
X~ Nly,0,), aX ~ Nlally,a° o), — N[ . ]

e \We want our variance to be 1. How?

e Divide whole thing by the standard deviation (square root of variance)

py=b~ Ny =04:2p,0=p,)/ N)
Standard deviation = /(2p (1= p,)/ N

Pambs o Pamba 20a(0-00)/N
J@h=p /N J@p,=p)/ N 2040=b,)/ N




Normalization (divide by standard
deviation)




Association Statistic

Py = b
J@p(l=p )/ N

-
prj; — p, =0 (Null Hypothesis), § , = La— L ~ N(O,l)

N2/ N D, =D, I
|When computing p-value of association statistic |

Ap oAl
prA P4 # 0 (Alt Hypothesis), SA—\/Q/jéfi/ppil p )~N(/’LA\/W,1)
A= 1y

B
J@h (1= )/ N

3= ~N

1

vy =1y
\/QpA I - PA)

|When computing association power

where 4 , , noncentrality-parameter is A v/ N




Association Statistic — Computing p-
value

e 100 cases, 100 controls, significance threshold & =0.05
e Observe 130 A’s in cases and 110 A’s in con’rrols
pi=Ra=65 py=it=55 p, =tk
pia—pa _ 65—.55
V2INp,(1=p,)  2/2004/6(1- 6)
e Is this statistic (S,) significant given the significance threshold?

S, = =2.04




Association Statistic — Computing p-
value

e One way is to find whether S, is in the tail of the normal distribution

e First, we find where the significance threshold ( & =0.05) is on the standard normal
distribution

gnorm computes the value of x when we know Pr(X < x), inverse of CDF
& '(0/2) =D (0.025) =qnorm(0.025) =—1.95
@'(1-0.025) =@ (0.975) =qnorm(0.975) =1.95

IS, < o! (%] ors$, > ! [%] , then significant

In this case, check whether § ; <—=1.95 0or.§ ; >1.95

2.5%

-1°95 1.95



Association Statistic — Computing p-
value

Another way is to use pnorm in R

pnorm computes Pr (X < S,) or Pr(X > S,)

If S, is positive, p-value = 2*pnorm(2.04, lower.tail=F) = 2*0.021 = 0.042
If S, is negative, p-value = 2*pnorm(-2.04) = 2*0.021 = 0.042

If p-value is less than the significance threshold (@ =0.05), it is significant



Association Statistic — Another example

e 1000 cases, 1000 controls, significance threshold & =0.05

e Observe 1200 A's in cases and 1100 A’s in controls

A+ 1200 _ <o 110 _ s bith,
PaT o000 =0 PaTogo0 =00 baT Tgo =0

o by ~ 6-.55

= - ~3.19
Yo N p=h,) 272000457501 -.575)

e Is this statistic (S,) significant given the significance threshold?

Check if § < @™ [9] orS§, >-@ (E)
2 2

In this case, check whether § , <—=1.95 0or§ ; >1.95

e p-value = 2*pnorm(3.19, lower.tail=F) = 2*0.00071 = 0.00142

e This p-value (0.00142) is less than significance threshold (0.05), so
significant



Statistical Power

So far, we assumed there is no effect (a fair coin, SNP is not associated) and
computed a p-value

Now, let’s assume that there is an effect; a coin is biased (p = 0.8)
How many times should we toss the coin to find that it is biased?

If toss it a billion times, then surely will find that the coin is biased.
But, we can’t toss it a billion times (we are too lazy)

What if we only toss 100 times¢ Can we find that the coin is biased?

We say the coin is biased if frequency of heads (or tails) is far from 0.5

If we toss only 100 times, it is possible that sometimes the frequency of heads is not 0.8, but
close to 0.5 (just by randomness). In this case, we cannot say the coin is biased.

Let’s say we will do this 100 tosses 10 times. And, suppose we know that we will find the
coin is biased 7 out of 10 times.

Then, the power is 70%



Statistical Power (More formal
definition)

The power of a statistical test is the probability that it will correctly lead to the
rejection of a false null hypothesis (Greene 2000)

The statistical power is the ability of a test to detect an effect, if the effect actually
exists (High 2000)

Cohen (1988) says, it is the probability that it will result in the conclusion that the
phenomenon exists

If power is 100%, we will always find that the effect exists (e.g. the coin is biased)
If power is 20%, we will find that the effect exists one out of 5 times

Obviously, we want high power. How can we achieve high power?



Power of Association Studies

Let’s assume that SNP A is associated with the disease
+ —_
p; =04 p =03

How do we find that SNP A is associated with the disease?
e We collect cases and controls and compute association statistic (S,)
e If p-value of S, < significance threshold (0.05), we find the association

Can we always find the association?

o|f we repeat the association study (recollect cases and controls), would we again
find that p-value of S, < significance threshold?

e|f we collect a billion cases and a billion controls for each study, we are sure that
we will find the association again and again (power = 100%) because

pr=p=04  p, =p, =03



Power of Association Studies

e What if we collect only 100 individuals for each study?

Study # Z); 12);1 S, p-value Is significant?
1 0.45 0.3 2.19 0.014 Yes
2 0.4 0.35 0.73 0.23 No
3 0.43 0.38 0.72 0.23 No
4 0.42 0.27 2.23 0.012 Yes
5 0.44 0.29 2.20 0.013 Yes

e The poweris3/5=60%

e Obviously, we want to detect the association when we collect cases and
controls and compute association statistic (if it exists)

e If there are not enough individuals, we may not detect the association even if
it exists



How can we compute power of association studies?

e Power of association studies is the area under the alternative distribution for Pr(X >=
®-1(1-a /2)) and Pr (X <= P-(a /2)) where D -'is gnorm

Ay A
Ifp! = p, # 0 (Alt Hypothesis), S , = pAApA A ~N(/1A\/ﬁ,1)
\/Q/N\//?AG—ﬁA)
-
where A , = Pa” P , noncentrality-parameter is A A\/W

4 \/QpA<1_pA)



How can we compute power of association studies?

;igniﬂc?dnce Power of
resno - association
—~ test

/‘ % 5 ) I s s\

/ A
®-1(a/2) Non-centrality AN ®-1(1-a/2)
gnorm(0.05/2)=-1.96  parameter gnorm(1-0.05/2)=1.96



How can we compute power of association studies?

Non-centrality
parameter

pr— Positive NCP
Red area = power

Significance
threshold

ON(0/2) T~

Negative NCP
Red area = power

S

Significance
threshold
®-1(1-a/2)




Power Equation

DD (/2 + A, N)
pnorm(qnorm(ct/2)+A \/ﬁ )

- =D (/2 + A N
| — pnorm( — qnorm(ct/2)+A \/W )

Power

Very Very Important Equation (Memorize for midterm)



Example of power equation

Power = pnorm(qnorm(ct/2)+A JN )+ 1—pnorm(—qnorm(a/2)+A A\/ﬁ )

Let A, VNV be 0, then alternative distribution is centered at 0

And, (qnorm(e/2)+ A4, N')=—1.96+0 = —1.96
So, power = pnorm(—1.96)+1—pnorm(1.96)=0.025+(1-0.025)=0.05
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What we want to compute
(area under the curve from the
significance threshold)

What we are computing

pnorm(-1.96)+1-pnorm(1.96)



Example of power equation

Power = pnorm(qnorm(ct/2)+A JN )+ 1—pnorm(—qnorm(a/2)+A A\/ﬁ )

Let A A VN be 1, then alternative distribution is centered at 1

And, (qnorm(e/2)+A, NN )= —1.96+1=—0.96
So, power = pnorm(—0.96)+1—pnorm(2.96)=0.169+(1-0.998)=0.17
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Example of power equation

Power = pnorm(qnorm(ct/2)+A JN )+ 1—pnorm(—qnorm(a/2)+A A\/ﬁ )

Let A, VV be 2, then alternative distribution is centered at 2

And, (qnorm(e/2)+ AN N')=—1.96+2 = 0.04
So, power = pnorm(0.04)+1—pnorm(3.96)=0.516+(1-0.999)=0.516
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Example of power equation

Power = pnorm(qnorm(ct/2)+A JN )+ 1—pnorm(—qnorm(a/2)+A A\/ﬁ )

Let A, VNV be 2, then alternative distribution is centered at 3

And, (qnorm(ct/2)+A, N ) =—1.96+3 =1.04
So, power = pnorm(l.04)+1—pnorm(4.96)=0.85+(1-0.999)=0.850



04

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

llllllllllllllllll
10 9 8 7 6 5 -4 3 -2 1 0 1 2 3 4 5 6 7 8 9 10

||||||||||||||||||
10 9 8 7 6 5 4 3 -2 41 0 1 2 3 4 5 6 7 8 9 1C

rer equation

What we want to compute
(area under the curve from the
significance threshold)

What we are computing
pnorm(1.04)+1-pnorm(4.96)



More on Power Equation

Three things that affect the power
Sample size (the total number of individuals)
Effect size (relative risk of a SNP)

Significance threshold (@)

Power = ®(® (0 /2 + A, N) + 1-B(D (o0 /2)+ A, N)

gargeCk,
tivetbe pavemnd fper 0
shifted further away from N




Power Example

e Significance threshold & =0.05
e Assume true case frequency = 0.6, true control frequency = 0.5
e Assume we collect 100 cases and 100 controls

+ —_
_|_
P > P =0.55 N=200

p,=06 p, =05 p, =

e Compute non-centrality parameter

+ - - —
I ) S VR 0.6—0.5 vl
N2/ N\p, (1= p,)  2/20040.551-0.55)

e Compute power
Power = ®(® (@ /2)+ A N N)+1- (-0 (o /2)+ A V)
O(D1(0.025)+2.01) +1— B(—D ' (0.025)+ 2.01)
O(—-1.95+2.0)+1-P(1.95+2.01)
®(0.06)+1—D(3.96) = 0.52+1—0.9999625 =



Power Example

e Significance threshold & =0.05
e Assume true case frequency = 0.6, true control frequency = 0.5
e Assume we collect 500 cases and 500 controls

+ J—
_I_
P 217,4 =0.55 N=1000

p;=06 p, =05 p, =

e Compute non-centrality parameter

+_ B —
P )l ) _ 0.6-0.5 a4
N2/ N\p (= p,)  N2/100040.55(1-0.55)

e Compute power

Power = ®(® (@ /2)+ A N N)+1- (-0 (o /2)+ A V)
O(D ' (0.025) +4.49)+1 — DD (0.025) + 4.49)

D(—1.95+4.49) +1— D(1.95 + 4.49)

D(2.5

4)+1-@(6.44) = 099+1—1:-



Relative risk
Effect size of a SNP
AC8GCiation Strength

m A causal SNP has a certain strength of effect on the disease.

m This effect can be parameterized by:
v = relative risk

m Definitions:

p, = allele frequency of SNP A.
F = disease prevalence
+/- = disease state.

m Derivation of case and control frequencies:
P(A)=pn  P'A=P(Al+)  pa=P(Al-)  F=P(+)
P(A|+)=P(+|A)P(A)/P(+)

P(+|A)= yP(+|7A)

__PHI14)

+)=F=pAP(F[A)F(T-py)P(+|7A)
P(+)=F= paP(+|A)+(1-pa)P(+|A)y
P(+)=F=P(+[A)(pa*(1-pa)¥)= P(+|A)(Pa(y-1)+1)/y
P(+|A)= yF/(pa(y-1)+1)
P(A|+)=P(+|A)P(A)/P(+)= P(+|A)pa/F= ypa/(Pa(y-1)+1)

P )

Relative risk is a ratio between 1) probability
of having a disease when you have a
SNP and 2) probability of having a
disease when you do not have a SNP



Relative Risk Examples

Assume relative risk = 1.5
Assume disease prevalence (F) is very small (0.001)
Assume allele frequency (p,) is 0.2 (sometimes called “population allele frequency”)

We can then compute true case frequency and true control frequency

1.5*0.
pr=—tta 19T 99
(y-1)p,+1 (1.5-1)*0.2+1
py=p,=0.2
NOTE: this p, is not the same as p, in NCP (A,)
+ — + —
— +

A Pa” Pa , where p, = L > La (I use pj for thispA)

A_ \/QPAG—PA>



Relative Risk Examples

Assume relative risk = 2.0
Assume disease prevalence (F) is very small (0.001)
Assume allele frequency (p,) is 0.2 (sometimes called “population allele frequency”)

We can then compute true case frequency and true control frequency

x
PZZ 1 _ 2%0.2 _ 0.333
(y-1p,+1 2-1)*0.2+1
py=p,=02

A larger difference between true case frequency and true control frequency
e This example: 0.333 -0.2 =0.133
e Previous example: 0.273 -0.2=0.073

e Thus, higher power for this example



HW1 Pr 1 — Part A. Calculating the
NCP

Use the formulas described in Lectures 2 & 3 to compute the non-centrality parameters.
Compute the non-centrality parameters for minor allele frequencies 0.05, 0.2 and 0.4, for
relative risks of 1.5, 2.0 and 3.0, for total individual numbers in the cases and controls of

500 and 1000. You must compute the non-centrality parameter using R and show a
transcript of your code and results. You can enter the results into these tables and include

them in the homework submission.

500 individuals | Allele frequency
0.05 02| 04

1.5

2.0

Relative risk

3.0

Table 1: 500 Individuals

1000 individuals | Allele frequency
0.05 02| 04

1.5

2.0

Relative risk

3.0

Table 2: 1000 Individuals



HW1 Pr 1 — Part A. Calculating the

NCP

Non - centrality parameter is A, VN =

N
Pa

PN

\/2PA(I_pA)

Given p , and relative risk (¥), we can compute

true case frequency (p;) and true control frequency () as

py=—1ha py=1
4 <7/ T DpA +1 4 4

You can create a R function for NCP like

ncp = function(gamma, pa, N) {
pplus = (gamma®*pa)/((gamma-1)*pa+1)
pminus = pa
ppm = (pplus+pminus)/2
lambda = (pplus-pminus)/(sqrt(2*ppm*(1-ppm)))
ncp = lambda*sqrt(N)
return(ncp)

}
> ncp(1.5,0.05,500)

[1] 1.52396

. Pyt by
by (in AA) = %

One tip: rather than calling this function for
every pair of allele frequency and relative risk,
you can use “outer” function in R to compute
NCP for all relative risks and frequencies.
Type ?outer in R for help.



HW1 Pr 1 — Part B. Calculating the
power

Now compute the power of these studies assuming a p-value threshold of 0.05. You must

compute the power using R and show a transcript of your code and results. You should re-
use the R code you wrote for computing non-centrality parameter in Part A. You can enter
the results into these tables and include them in the homework submission,

500 individuals | Allele frequency
00502 04

g
o

Relative risk

3.0

Table 1: 500 Individuals

1000 individuals | Allele frequency
0.05 02| 04

1.5

2.0

Relative risk

3.0

Table 2: 1000 Individuals



HW1 Pr 1 — Part B. Calculating the
power

Power Equation
=D(D (0t/2)+ A, AN)+1- DD (ot /2)+ A, \IN)
= pnorm(qnorm(oy/2) + A, VN )+ 1—pnorm(—qnorm(c/2) + A, VN )

You can create R function for Power like
power = function(gamma, pa, N) {

return(pnorm(gnorm(0.05/2)+ncp(gamma,pa,N))+1-pnorm(-1*gnorm(0.05/2)+ncp(gamma,pa,N)))

}
> power(1.5,0.05,500)

[1] 0.331664

One tip: rather than calling this function for every pair of allele frequency and relative risk, you can
use “outer” function in R to compute NCP for all relative risks and frequencies. Type ?outer in R for

help.



HW1 Pr 1 — Part C. Calculating # of
individuals

Using the same relative risks and minor allele frequencies as in Part A and B, compute the
number of individuals needed to achieve 80% power for each pair of relative risk and
minor allele frequency. You should use the R code you wrote for Part B, and try different
values of the number of individuals to achieve 80% power roughly (79% ~ 81%). You can
enter the results into these tables and include them in the homework submission,

Allele frequency

0.05 102 04
% 15
@
Z 20
g
= 3.0

Table 5: 80% power

Try different values for N in the previous power function to achieve
80% power



Pr 2 — Unbalanced Cases and Controls
Part A

Assume that you have N total individuals in a balanced case and control study (i.e. N/2
case individuals and N/2 control individuals). The non-centrality parameter for this study is

2, N

On the other hand, if the number of cases and controls are not equal, the non-centrality
parameter is different. If there are N*/2 cases and N-/2 controls, the non-centrality
parameter is

2(N'N")
/IA f
N"+N
Now assume you are designing a study with three times the number of cases as controls.
How large does your study have to be (as a factor of N) so that you achieve the same
power as a balanced study with N individuals?



Pr 2 — Unbalanced Cases and Controls
Part A

In the balanced study, NCP given N total individuals is A, N
In the unbalanced study, let N'' = the total number of individuals

+ J—
—— = the number of case individuals —— = the number of control individuals

N7 = the number of case chromosomes N~ = the number of control chromosomes
+ — + A=
N =N—+N—, NT+ N =2/N", NCPis A, AN'N )
22 N+ NT
We have three times the number of cases as control, so N7 = 3N~
Re-write N™ and N~ in terms of N
Eql) SN+ N =2N' = 4N =2/N' => N =(1/2)N'
EqQ QN +1/3NT=2N' = 4/3INT=2N' = N =(3/2QN'

Plug N* and N~ into NCP of unbalanced study, and set it equal to NCP of balanced study,

2(N'N~ 2((3/2)N'(1/2)N'
AN =1, /]$++N_>:AA\/ (« >2N<' IN')

Solve for N' in terms of N




Pr 2 — Unbalanced Cases and Controls
Part B

Assume that you have N+/2 cases and an unlimited number of controls. Derive what the size of
the balanced study is with equivalent power. (Hint: First solve for the noncentrality parameter if
you have a very large number of controls, try using 1,000,000)

In this problem, we have N /2 cases and an infinite number of controls
QNTNT)
NT+NT

Similar to Part A, we set NCP of balanced and unbalanced studies equal,

/IAM:AA\/%NJr‘N)

the NCP is /IA

NT+NT
ZAJW:/IA ONT lim N
N =22 N7+ N7
N _
What happens to as N~ —> o0?
INT+ N

Then, solve V in terms of (N /2), the number of cases



Pr 2 — Unbalanced Cases and Controls
Part C

(Grad Students ONLY)

Derive the non-centrality parameter for unbalanced cases and controls above. Describe
the precise approximation assumption you need to make.

pi ~N(pi.pi(1=p)/N")

Pa ~N(py.pa(1=py)/N7)

Taking the difference,

N (= p)+ N7y (1= )
NTNT

We use the following approximation

N pi(1=p)+N'p,(1=p) =(N +N")(p,(1=py))

At A + - (N_+N+)pA(1_pA)

Pa=DPa ~N| Py=DPa> .

AT PA A A NN

Divide the equation by the square root of variance term so that variance is 1

Py =0 ~N[/ﬁ—ma

Then, after doing some algebraic manipulation, you can show that

+ —
NCPis 2, LN
N +N



Correlation

What is a correlation (in general)?
A correlation is a single number that describes the degree of

relationship between two variables

Ranges from —=1.00 to +1.00 (often denoted as r)
Example (GPA vs. TV in hours per week) from (hitp://www.nvecedu/

home/elon'rhier/me’rhods/correlq’rion.h’rm)

Participant | GPA | TV in hours per
week
#1 3.1 14
#2 2.4 10
#3 2.0 20
#4 3.8 7
#5 2.2 25
#6 3.4 9
47 2.9 15
#8 3.2 13
#9 3.7 4
#10 35 21

In this sample, the correlation is -.63.

Hours per week of TV

30,

251

20-\“ | .

15- \

10] . \
5- -
0

15 20 25 30 35 40
GPA



orrelation (Linkage Disequilibrium

1 Correlation that we consider in class is one between SNPs

Ty T ———— 2 A3 mAL Ay B ———— - NS Y Y T
A A T A A G O T AT A L T A A T A A T A LA T A A T G e TA G A S O O T A G A T O A A T A T A S OO AGA S COT OCACATOTATAGTCOTACATGAGAT CARCASTRRGATIGACATOATAGT T A AT GTATACT I TACATCAGATIGACATCASATCIGATA
AP, T ATV A ATV R 3 TV ATV AL ATV /AR GAIR FYL VYR (VR (VAR (V3 Py VAR Fv2 v e APAARDA AR Al 2 AT A T AR T AT AL e
A T A AT O T AT AR T T A A T A A T A LA T A A T oG e T A G A S A G T A G A T O oA LA T A T A T AGA S COT OGACAT O TATAGTCTACATGAGAT SR CARCAST R GATCGACATCOATAGTC ST AL AT GTATAGTICTACATOAGATIGACATCASATCGETA
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Correlation (Linkage Disequilibrium)

Ind | SNPX | SNPY
1 A C
2 A C
3 A C
4 T G
5 T G
6 T G
7 T G
8 T G
9 T G
10 T G

Perfect correlation

If you have A allele in SNP X, you always have
C allele in SNP Y

If you have T allele in SNP X, you always have
G allele in SNP Y

SNP X'and SNP Y have r=1 and they are in
linkage disequilibrium

Implication: we do not need to collect
information about SNP Y if we collect SNP X



Correlation (Linkage Disequilibrium)

Ind | SNPX | SNPY
1 A Cc
2 T G
3 A Cc
4 T G
5 T G
6 T Cc
7 A G
8 T G
9 T G
10 T G

er=0.52

* Assume SNP Y is causal, but collect SNP X (why
not collect Y? we’ll discuss later)

» Suppose we collect SNP Y with 1000 individuals
and we know we achieve 90% power (the probability
of detecting that SNP Y is associated with a disease)

« What would be the power of detecting association
of Y if we collect SNP X?

* Intuitively, the closer X is to Y (higher r), the higher
power

* The more X is different from Y (lower r), the lower
power



Indirect Association

Assume we have two SNPs, A and B
B is the causal SNP (two alleles are B and b)

However, we collect A (two alleles are A and a)

m Ve want to relate

_ (Py = P) S ~NA 1/]\]1
AA \/2 ])A (1 - ])A ) § ( g , )
m o

__ Py -py) N
& V2P (1= pp) s N(AB\/N’I)




Indirect Association (derivation)

Most difficult problem (in terms of length) in the midterm

One key assumption: conditional probability distributions are
equal in cases and controls

ﬁ:w =Pap = Pas

1. Let’s write the true case frequency at SNP A in terms of joint
probabilities of SNPs A and B

+ o+ +
Pu=Dbup TPy

Let’'s understand this equation in terms of Venn diagram



Indirect Asso,cmuon 2¢Ierlva’r|on)
- by




Indirect Association (derivation)

2. Use conditional probability

Pap
Pp

by =Dyt =\~ pg)py, because p=1-p,

Pap = < Pap = Pplas

3. Rewrite p*,g and pag
+ .+ +
Pya=bypt Dy

\
Py =bpbap+(1=Pg)byy  Remember: Dap = bap = bap

by=tpbypt—Dp)byy



Indirect Association (derivation)

4. Take a difference between p*, and p=,

by =bpbap T U= pp)byy == D4=bpbap+t1—bp)by
by— by = ngpAus +(1- pg)p/ﬂb —bpbyp == Dp)byy

= p;/’Aw T D~ pgﬁ/ﬂb —Ppbyp— bapt Ppby (expand all terms)
= f’gl’Aw —Ppbap pEpA|b + Pl py, canceled)

= pap(bp = bp)— byt — bp) (arrage terms)

— (ﬁ; - pg)(pfug — pA|b> (arrage terms)



Indirect Association (derivation)

5. Substitute p*, — p=5 into A,

Py =y
_ 4 4 and ,bA Py = (PB pBXIbAlB pAV?)
T -

(45 - pB><pA|B )
J20,0=p,)

(g 1) bap = bap) 20 (1= 1)

N T RN TN
(=t bap~ pA|b>\/ 2pp(1— 1p)
_\/QpBa_pB) \/2ﬁA<1—PA>

. (b= Lap205(1— bp) [/1 ) ]

20,0 b,) J20,0- 1)

Ay =

[multiply by

arrange terms)




Indirect Association (derivation)

6. Conditional probability again

and by = Pay = Lar because p, =1- p,

by 1=pp

Pap

Pp

Pap =
Then

<pA|B o pAV,)\/QpB(l _ pg)
\/QPA(I _ ﬁA>

v

(pAB_ pAb j\/QpB(l_ﬁB>
PO

\/Q]JA(I—])A)

=1

B




Indirect Association (derivation)

(pAB_ Pap )\/pB(l_pB> (pABG bg)  Palp }\/pB
A A

1 = pB l_sz _ ])B(l pg) (1 pB ﬁB
8 ? \/pAO_pA) ? \/pA I [7A>
1— p )—
(pAB( 2 pA”pB]\/pBa—pB) (pAB pAng ;)A”I)B}\/pgl 1)
AN A
\/lel_le \/f’Al by)
Pap = Ppbapt by bap— Pyby ]
Py ppl—=pp)
—A[ pp(l=pp) ]\/B —),(‘b3< — Dy) \/B b
= Ap =Ap
\/pA - A \/pA - A

‘Remember Pia=bapt Py




Indirect Association (derivation)...
Finally

_ Pap — Ppb

[p;B(l _pzp; ]\/pB(l—/)B) [\/;B 1 _szj]
Ay =2y - = =g - -
\/pAO_/?A) \/pA(l_pA)

] Dap — PPy :AB'/TQ
B
\/PB(l—ﬁB)\/ﬁA(l—ﬁA)




Indirect Association (example)

Significance threshold & = 0.05

Causal SNP A: true case/control probabilities are 0.6/0.5
Collect SNP B and r?,,=0.8

Collect 400 case and 400 control individuals

First calculate NCP at the causal SNP (A)

b
_|_
pi=6 p;=.5 pAszQpAz.% N =800

AN fazh 625
N = _ — 4.
N2/ N\p(=p,)  2/8004.55(1-.55)

* Next calculate NCP at the collected SNP (B)

AN = AN, =402+ 8 = 3.56




Indirect Association (example)

« Compute power using NCP of SNP B
Power = (@ (00 /2)+ Ay N ) +1- DD (0 /2)+ A,y V)
= O(D1(0.025)+3.56) + 1 — B(—D ' (0.025) + 3.56)
=95



Multiple testing with SNPs

Each coin corresponds to each SNP

We do not know which SNP causes a disease (we are tying to find
which SNP causes a disease)

There are more than a million SNPs

If we look at only one SNP (that does not cause a disease), the
probability that we find the SNP is associated with a disease is 0.05
(the same as one fair coin)

If we look at a million SNPs (that do not cause a disease), the
probability that we find any SNP out of a million is associated with
a disease is much greater than 0.05 (similar to 100 coins)

So, without “multiple hypothesis correction,” we would have a lot of
false positives



Multiple Hypothesis Testing
“Correction”
We want to find a new significance threshold (& ) for

each SNP such that the overall false positive rate
(considering M SNPs) is & = 0.05

Two correction methods: Sidak and Bonferroni corrections

Sidak correction

o =1-41-«o

Bonferroni correction

Both have similar values if M is large



Multi-SNP Association Example

m Collect data at 5 SNPs
m Significance Threshold a=0.05
m Sample: 100 Cases and 100 Controls

m Total of 200 Case Chromosomes and 200
Control Chromosomes

Pl = 12%(3 6 p;= 200 =4 pﬁ_ﬁ 3 p4=—=5 p5=—=6
=5 py=5-=2375 pi=2-=325 p,==475 p;=12=.0625

p 1 200 200 200

p=55  p,=3825  p,=3125  p, = 4875 P = 6125

S = .6'— S -201 S, =— 71» -.375 - 514 S = .?— 325 __
\V2/200+/.55(1-.55) T N2/2004/.3825(1 - .3825) T N2/2004/.3125(1 - .3125)
S5-475 6- 625 - 0513

Sy =— , =500 S, =— .
\2/200+/ 4875(1 - 4875) * \2/2004/.6125(1 - .6125)

When testing multiple SNPs,
remember the multiple
hypothesis testing

S,=S,,,,=2.01 (Is this-
Per-marker threshol

; " 0 01 (Bonferroni)
-01(0.01/2)=2.57 L———

Association is not significant




Multiple Hypothesis Testing Correction

Bonferroni correction assumes that all tests are independent: all
SNPs or all coins are independent

As you see in the indirect association, SNPs are not
independent (there is a correlation)

Bonferroni is conservative when SNPs are not independent
& from Bonferroni (& / M) < true ¢ that gives overall &

In other words, if we use O/ from Bonferroni on correlated SNPs, the
overall false positive rate would be less than

Isn’t it a good thing because we have fewer false positives?
It's good in terms of false positives but not good in terms of power
Remember as the significance threshold decreases, power decreases

We need more number of individuals to detect that a SNP is
associated with a disease if it indeed causes a disease



Multi-SNP Power analysis

Until now, we considered power of one SNP

We know now how to find the significance threshold when
we test multiple SNPs

We can then compute power of our association study that
involves multiple SNPs
In a Multi-SNP power problem, we are given

The number of SNPs (M)

Minor allele frequency of each SNP

Relative risk of a causal SNP

The number of cases and controls

The overall significance threshold

Let’s solve the problem with an example



Multi-SNP power without Tag SNPs

Assume that we have 5 independent SNPs, 3 have minor allele
frequency of .4 and 2 have a minor allele frequency of .2. Assume
that the relative risk of one of them is 2.0 (we do not know which
one). Assume that we are collecting 100 case and 100 control
individuals. With & =0.05, what is the power of this association
study?

4 steps for solving this problem
1. Compute p*,, p', and p, for each MAF using relative risk and MAF
2. Compute NCP for each MAF using p*,, p'a PA ond N

3. Compute power for each MAF using NCP and @ (don’t forget Bonferroni
correction!)

4. Average power to compute total power using power of each MAF



"
Step 1: Compute p*,, p-» and p, for each MAF using relative risk
and MAF

MultiSNP Power

m If a SNP with minor allele frequency of .4 is
causal, then

= P = 2”4 =57 p,.=p=4 p,= Pat P _ 485
(y-Dp+1 (2-D4+1 ! ! 2

+
Pa

m If a SNP with minor allele frequence of .2 is
causal, then

_ Yp _ 2% 2 _ _ | - patDP.
(y-Dp+1 2-1)2+1 ! | 2

+
Pa




Step 2: Compute NCP for each MAF using p*,, P'as PAo @and N

MultiSNP Power

m If a SNP with minor allele frequency of .4 is
causal, then

A AN = Pa = Py _ S7-4 =34
p-4 N2/NAlp,(1=p,)  ~2/200+/.485(1- 485)

m |[f a SNP with minor allele frequence of .2 is
causal, then

A AN = Pa =D, _ 33-2 =29
p=2 V2/NA/p,(1=p,)  ~N2/200+/.266(1 - 266)




" JE
Step 3: Compute Power for each MAF using NCP and a (don’t
forget Bonferroni correction!)

MultiSNP Power

m If =0.05, then the per-marker threshold using
the Bonferroni correction, a,= a/5=0.01.

m The power at a SNP with minor allele

frequency 0.4 is O
power = (D (cr. /2) + AVN) + 1= (=D (. /2) + AIN)

= DO(P(0.005)+34)+1-(-D'(0.005)+ 3.4)
_ 795 P
m At a SNP with minor allg)le frequency 0.2
power = (l)(d)'](ax /2) + A\/]V) +1-(-D ' (a,/2) + )L\/N)
= O(P'(0.005) +2.9) + 1 - (=D (0.005) + 2.9)
= 627 D




" JEE—
Step 4: Average Power to compute total power using power of each
MAF

MultiSNP Power

m Since there are 3 SNPs with minor allele
frequence 0.4 and 2 SNPs with minor allele
frequency 0.2, the total power is

S &
total power = 57105+ 27 627 =728

5




Tag SNP Selection

HapMap found 1 ~ 2 million SNPs in humans
Turns out that many of them are correlated

It means that we do not need to collect 1 ~ 2 million SNPs
when we do association study

Maybe we only need 0.5 million SNPs, which is cheaper than
collecting 1 or 2 million SNPs

Tag SNPs are ones that we actually collect in the
association study

Since we are not collecting all SNPs, tag SNPs should
cover as many SNPs as possible



Tag SNP Selection

We are given M SNPs, and correlation between every pair of SNPs

We want to choose a minimum set of SNPs (called “Tag SNPs”) that covers
every SNP; each SNP is either Tag SNP or has correlation value higher than
some threshold with Tag SNP

Greedy algorithm chooses SNP that is correlated with the most remaining
untagged SNPs as Tag SNP until every SNP is either Tag SNP or correlated
with Tag SNP

Greedy algorithm not optimal, but good performance



Greedy Tag SNP Selection

Nodes are SNPs
Edges denote r2>.8

Out Degree Counts
1: 2

4

: 5 (highest)
(highest)

2
3
4
S:
6
7
8
9




Greedy Tag SNP Selection

Nodes are SNPs @
Edges denote r2>.8

Out Degree Counts

5: 0 G,
6:0
8: 1 (highest)
10: 1 (8)
10

Tags 3,8




Greedy Tag SNP Selection

Nodes are SNPs @
Edges denote r2>.8

Out Degree Counts

5: 0 (highest) @
6: 0

Tags 3,5,8




Greedy Tag SNP Selection

Nodes are SNPs @
Edges denote r2>.8

Out Degree Counts
6: 0 (highest)

Tags 3,5,6,8




MultiSNP Power with Tags

m Assume you have 5 SNPs, 2 of them are tags. Assume
that the relative risk of one of them is 2.0 (we do not
know which one). Assume that we are collecting 100
case and 100 control individuals. With ¢=0.05, what is
the power of this association study?

tag tag




Multi-SNP power with Tag SNPs

4 steps for solving this problem

1. Compute p*,, p', and p, for each MAF using
relative risk and MAF

2. Compute NCP for each Tag SNP using p*,, p A
PN, and NCP for non-tagged SNP using NCP of Tag
SNP and its correlation to Tag SNP

3. Compute Power for each SNP using NCP and &
(don’t forget Bonferroni correction & the number of

tag SNPs!)

4. Average Power to compute total power using power
of each SNP



"
Step 1: Compute p*,, p-» and p, for each MAF using relative risk
and MAF

MultiSNP Power

m If a SNP with minor allele frequency of .4 is
causal, then

= P = 2”4 =57 p,.=p=4 p,= Pat P _ 485
(y-Dp+1 (2-D4+1 ! ! 2

+
Pa

m If a SNP with minor allele frequence of .2 is
causal, then

_ Yp _ 2% 2 _ _ | - patDP.
(y-Dp+1 2-1)2+1 ! | 2

+
Pa




Step 2: Compute NCP for each Tag SNP using p*,, p'a; Pa;N, and NCP for non-tagged
SNP using NCP of Tag SNP and its correlation to Tag SNP

MultiSNP Power

m |[f a SNP with minor allele frequency of .4 is
causal, then

A AN = Py~ Py _ S7-4 =34
p-4 N2/NAlp,(1=p,)  ~2/200+/.485(1- 485)

m |[f a SNP with minor allele frequence of .2 is
causal, then

A AN = Pa =D, _ 33-2 =29
p=2 N2/NAIp (= p,)  A2/200+/.266(1 - 266)




Multi-SNP power with Tag SNPs

Step 2: compute NCP for non-tagged SNP using NCP of tag SNP
and its correlation to Tag SNP

@

SNP 1 SNP 3 SNP 4

tag tag

SNP 2
NCP at SNP 1 = 3.4 * V0.8 = 3.04 SNP'S

NCP at SNP 2 = 3.4 *\1 = 3.4 (Tag SNP)
NCP at SNP 3 = 3.4 * 0.7 = 2.84
NCP at SNP 4 = 2.9 * V0.8 = 2.59
NCP at SNP 5 = 2.9 #401 = 2.9 (Tag SNP)



Multi-SNP power with Tag SNPs

Step 3: Compute Power for each SNP using NCP and & (don’t
forget Bonferroni correction & the number of tag SNPs)

Since there are 2tag SNPs, &/ .= & /2 =0.05/2 = 0.025

power at SNP 1= ®(® ™' (0.0125)+3.04)+1 - ®(—D 1 (0.0125)+3.04) = .787
power at SNP 2= ®(®1(0.0125)+3.4)+ 1 — &(—D ' (0.0125)+ 3.4) = .877
power at SNP 3= ®(®'(0.0125)+2.84) +1— ®(-D ' (0.0125)+2.84) = .725
power at SNP 4 = ®(@1(0.0125)+2.59) + 1 — &(—D ' (0.0125)+2.59) = .636
power at SNP 5 = ®(®(0.0125)+2.9) + 1 — O(—D ' (0.0125) +2.9) = .745

Step 4: Average Power to compute total power using power of
each SNP

Total Power = (0.787+0.877+0.725+0.636+0.745)/5 = 0.754



HW2 Pr 1 — Multiple Hypothesis

Testin
-_

In class, we talked about two methods to correct for multiple hypothesis testing,
Sidak and Bonferroni. Consider a multi-SNP association study where one is
interested in looking for any SNP that is associated with a disease phenotype
with a probability of 0.05 or 0.01. Compute the thresholds for association at
cach individual SNP if the researcher decides to consider 2, 5. 10, 100 and 1000
SNPs using both Sidak and Bonferroni corrections. Assume that the SNPs are
independent.

Significant Threshold
Sidak Bonferroni
0.05 | 0.01 | 0.05 | 0.01

Number of SNPs 10
100
1000




HW2 Pr 1 — Multiple Hypothesis
Testing

Sidak Correction: o =1- Mi1-o

. . o
Bonferroni Correction: oy =—

M
You can create R function for Sidak and Bonferroni like
sidak = function(alpha,M) {
return(1-(1-alpha)*(1/M))
}

bonf = function(alpha,M) {
return(alpha/M)
}

Using outer function in R,
alpha = ¢(0.05,0.01)

M = ¢(2,5,10,100,1000)
outer(alpha,M,sidak)
outer(alpha,M,bonf)



HW?2 Pr 2 — Tag SNP Selection
Problem

We are given the following matrix of correlations, r, between 10 SNPs.

1| 2 3 4 ) 6 7 8 9 10
1 /1/09|08 | 05 | 04 | 02 | 02 | 0.15 | 0.15 | 0.1
2 1 {09 05 |08 | 02| 02 |015|0.15 | 0.1
3 1 065 09 | 07 | 0.5 | 0.5 | 0.3 | 0.2
4 1 08| 05 |08 | 06 | 0.7 | 0.7
d 1 0.7 | 06 | 0.75 | 0.6 | 0.5
6 1 06 | 075 | 04 |03
7 1 0.8 | 0.8 | 0.8
8 1 0.6 | 0.5
9 1 0.5
10 1

2.1 Computing Power

Assume that we collect all 10 SNPs and the minor allele frequency (MAF) of
SNPs 1 to 5 is 0.3 and MAF of SNPs 6 to 10 is 0.15. Assume that the relative
risk of one of them is 2.0 (we do not know which one). Assume that we are
collecting 100 case and 100 control individuals. With a = 0.05, what is the
power of this association study?

Remember 4 steps !



HW2 Pr 2.1 — Computing Power

Step 1. Compute p*,, pa and p, for each MAF using relative risk and MAF

+ —
2*%3 _ Pyt PA
T = Vi =46 pp=p=23 pA:—A =

= = = 38
Pa y-Dp+1 (2-1).3+1 2

pplus = function(gamma,p) {

return((gamma*p)/(((gamma-1)*p+1)))
}

Step 2. Compute NCP for each MAF using p*a, p'a, P @nd N

Ap— 34N = PA=PA_ _ 46-3 a1
p= V2INfpa(l=pa)  V2/2004/38(1-38)

ncp = function(gamma,p,N) {

pp = pplus(gamma,p)

pa = (pp+p)/2
return((pp-p)/(sart(2/N)*sqgrt(pa*(1-pa))))
}




HW2 Pr 2.1 — Computing Power

Step 3. Compute Power for each MAF using NCP and a (don't forget
Bonferroni correction!)
If a =0.05, then the per-marker threshold using the Bonferroni correction, a,= a/10=0.005
The power at a SNP with minor allele frequency 0.3 is
_ -1 \/_ -1 \/_
power=®(D (o, /2)+ AN )+1-P(-D (o /2)+ AN )
= (I)((D_1(0.0025)+ 332)+1- CI)(—CI)_I(O.OO25)+ 3.32)=.69
power = function(gamma, pa, N, alpha, M) {
return(pnorm(gqnorm(alpha/M/2)+ncp(gamma,pa,N))+1-pnorm(-1*qnorm(alpha/M/2)+ncp(gamma,pa,N)))
}
Step 4. Average Power to compute total power using power of each MAF

5%.694+5%7
total power = =7
10
totalpower = function(M1,p1,M2,p2,gamma,N,alpha) {

M = M1+M2

firstpower = power(gamma,p1,N,alpha,M)
secondpower = power(gamma,p2,N,alpha,M)
return((M1*firstpower+M2*secondpower)/M)
}



Use the greedy algorithm to find a minimum set of tagSNPs with a r > 0.7.

HW?2 Pr 2.2 — Greedy algorithm

2.2.1 Finding Tag SNPs

1| 2 3 4 ) 6 7 8 9 10
1 11/09,08 | 05 |04 | 02 | 02 |0150.15 | 0.1
2 1 1095 05 | 08 | 02 | 02 |0.15 | 0.15 | 0.1
3 1 065 09 | 07 | 05 | 05 | 0.3 | 0.2
4 1 08 | 05 | 0.8 | 0.6 | 0.7 | 0.7
d 1 0.7 | 0.6 | 0.75 | 0.6 | 0.5
6 1 06 [ 075 0.4 | 0.3
7 1 0.8 | 0.85 | 0.8
8 1 0.6 | 0.5
9 1 0.5

[a—
-

1




HW?2 Pr 2.2.1 — Finding Tag SNPs

]
in e node wi




HW?2 Pr 2.2.1 — Finding Tag SNPs
]

Find the node with the most edges e

Out degree count
1:0

7:2

9:1

10:1

Tags 5, 7




HW?2 Pr 2.2.1 — Finding Tag SNPs

Find the node with the most edges

Out degree count
1:0

Tags 5, 7,1



HW?2 Pr 2.2.2 — Computing Power

2.2.2 Computing Power

Assume that the relative risk of one of tag SNPs in the greedy solution is 2.0
(we do not know which one). Assume that we are collecting 100 case and 100
control individuals. With a = 0.05, what is the power of this association study?

Again 4 steps !

Step 1. Compute p*,, pa and p, for each MAF using relative risk
and MAF

-- We already computed this in problem 2.1



HW?2 Pr 2.2.2 — Computing Power

Step 2. Compute NCP for each Tag SNP using p*a, p a, Pa,N, and NCP for non-tagged
SNP using NCP of Tag SNP and its correlation to Tag SNP

-- We already computed NCP for each Tag SNP in problem 2.1
-- NCP of non-tagged SNP is
-- Tag SNPs and correlated SNPs are
SNP 1: none
SNP5:2,3,4,6,8
SNP 7:9, 10
-- NCP of correlated SNPs:
NCP of SNP 2 = NCP of SNP 5 * 0.8
NCP of SNP 3 =NCP of SNP5 *0.9
NCP of SNP 4 = NCP of SNP 5 * 0.85
NCP of SNP 6 = NCP of SNP 5 * 0.75
NCP of SNP 8 = NCP of SNP 5 * 0.75
NCP of SNP 9 = NCP of SNP 7 * 0.85
NCP of SNP 10 = NCP of SNP 7 * 0.8
-- Can re-use R code in Pr 2.1 like
c(0.8,0.9,0.85,0.75,0.75)* ncp(2.0,0.3,200)



HW?2 Pr 2.2.2 — Computing Power

Step 3. Compute Power for each SNP using NCP and a (don’t forget Bonferroni
correction & the number of tag SNPs!)

-- Since there are 3 tags, a, = a/3 =0.05/3 = 0.01666667

power at SNP 1= &(®~1(0.05/3/2)+NCP(SNP1))+ 1 - ®(-®~(0.05/3/2)+ NCP(SNP1))
power at SNP 2= ®(d~1(0.05/3/2)+NCP(SNP2))+ 1 - d(—® ' (0.05/3/2)+NCP(SNP2))
power at SNP 3= ®(®~1(0.05/3/2)+NCP(SNP3))+ 1— ®(-®~(0.05/3/2)+ NCP(SNP3))
power at SNP 4 = ®(®~1(0.05/3/2)+NCP(SNP4))+ 1 - d(-® ' (0.05/3/2)+ NCP(SNP4))
power at SNP 5= ®(®~(0.05/3/2)+NCP(SNP5))+ 1 - D(—D ' (0.05/3/2)+NCP(SNP5))
power at SNP 6= ®(® 1 (0.05/3/2)+NCP(SNP6))+ 1—- d(—D ' (0.05/3/2)+ NCP(SNP6))
power at SNP 7= ®(® 1 (0.05/3/2)+NCP(SNP7))+ 1- (-~ (0.05/3/2)+ NCP(SNP7))
power at SNP 8 = ®(d~(0.05/3/2)+NCP(SNP8))+ 1 - ®(—D ' (0.05/3/2)+ NCP(SNPS))
power at SNP 9= ®(d~(0.05/3/2)+NCP(SNP9))+ 1 - (-~ (0.05/3/2)+ NCP(SNP9))
power at SNP 10= ®(d~1(0.05/3/2)+NCP(SNP10))+ 1—- ®(-®~1(0.05/3/2)+ NCP(SNP10))

Need to modify R code for power in Pr 2.1

Step 4. Average Power to compute total power using power of each SNP
-- Average power of 10 SNPs



HW?2 Pr 2.3 — Optimal algorithm

2.3.1 Finding Tag SNPs

The greedy solution for finding the minimum set of tag SNPs is not the optimal
solution. What is the optimal solution?

2.3.2 Computing Power

Assume that the relative risk of one of tag SNPs in the optimal solution is 2.0
(we do not know which one). Assume that we are collecting 100 case and 100
control individuals. With a = 0.05, what is the power of this association study?

Basically the same problem as Pr 2.2, but you need to find the optimal
solution for Tag SNPs, and its power



HW2 Pr 3 — Indirect Association Study

Problem
]

3.1 Calculating Correlation

Let’s assume that we have a following reference dataset of 10 individuals repre-
senting a population such as the HapMap. What is the correlation, r, between
SNP A and SNP B?

Individuals | SNP A | SNP B
Individual 1 A A
Individual 2 a a
Individual 3 A A
Individual 4 A a
Individual 5 a a
Individual 6 A A
Individual 7 a A
Individual 8 A A
Individual 9 A a
Individual 10 A A




HW?2 Pr 3.1 — Calculating
Correlation

The correlation equation is
PAB —PAPB
VPal-pa)yppd-pp)
pA = 03, pB = 04, pAB =0.2

Or, you can use R to compute correlation. Encode Aas 1 andaas 0
(reverse works too)

> snpA=c(1,0,1,1,0,1,0,1,1,1)
> snpB = ¢(1,0,1,0,0,1,1,1,0,1)
> cor(snpA,snpB)




HW?2 Pr 3.2 — Indirect Association
Power

Assume the causal SNP is B, but we collect SNP A. Assume that true
case probability and and true control probability are 0.4 and 0.5

respectively at SNP B. If we collect 500 case and 500 control individuals
and have a significance threshold of 0.05, what is the power at SNP A?
(Note : Use the correlation that you get from above question)

First, calculate non-centrality parameter of SNP B
P*5s=0.4, P3=0.5 Py =(0.4+0.5)/2 =0.45, N = 1000

T -_— - J—
ZB\/N= bp — Pp _ 0.4-0.5
\/2/1000\/pB<1—pB) \/1/500\/0.45*(1—0.45)

Second, calculate non-centrality parameter of SNP A
ANN=7r-A NN

Lastly, calculate the power using NCP of SNP A
@ (0 /2)+ A NN )+ 1= DD (o /2)+ A V)




HW?2 Pr 4 — Association Study with Multiple Disease
(Grad Students ONLY)

We know from the homework, that the most efficient association studies have
the same number of cases and controls. The Wellcome Trust Case Control Con-
sortium used 2000 cases and 3000 controls for each of their disease associations.
If you use the formula from the homework, this turns out to be equivalent to
an balanced case/control study with 2400 each. So in essence, they used 5000
people but only got the equivalent power of using 4800.

However, what they did was have 7 diseases where they collected 2000 cases
and they used the same 3000 controls for each association study. So they ef-
fectively used the 3000 controls many times while the each cases individual was
only used once. They collected a total of 7*2000+3000=17000 individuals.

Now the question is did they collect the right number of cases and controls
in this kind of scenario? If not, how many should they have collected. What if
there were only 3 diseases (the total number of individuals is 3*2000+3000 =
9000)? How about 10 diseases (the total number of individuals is 10*2000+3000
= 23000)?



HW2 Pr 4 — Association Study with Multiple Disease

- The total number of individuals collected is 7*2,000 + 3,000 = 17,000 individuals

- The question is, did they collect the right number of cases and controls in this scenario
under the assumption that the number of cases is the same for all 7 diseases and the
total number of individuals they collect is 17,0007

- In other words, does collecting 2,000 cases for each disease and collecting 3,000
controls maximize the power given the constraint that we collect 17,000 individuals?

- For example, what if we collect 1,500 cases for each disease (7 * 1500 = 10,500) and
collect 6,500 controls (17,000 — 10,500 = 6,500). Does this have higher power than
collecting 2,000 cases and 3,000 controls?

- If not, how many should they have collected?

- What if there were only 3 diseases, 10 diseases?



HW2 Pr 4 — Association Study with Multiple Disease

2ANTNT)
NT+N~

A4 does not depend on N* or N, so we want to know the value of N* and N that maximzes the power

In the unbalanced study, remember that NCP is A4

There are several ways for finding the value, and one way is taking derivative

NT+N =2N , Where N*is # of case chromosomes, N is # of control chromosomes, N is the total # of individuals,

and we have 17,000 total individuals, so 34,000 total chromosomes
34000= INT+N~
N~ =34000-7N"*

2
J2N+N_ _\/2N+(34000—7N+) _\/68000N+—14N+
NT+N~ ¥ N +34000-7N " 34000 6N "

+ +2
68000N " — 14N ) d  numerator
34000—6N T J dNt  denominator

Set the numerator equal to 0, then solve for N*, then you can solve for N™ using N~ = 34000— 7N *

Hint : You can use online math tool (e.g. WolframAlpha) to compute the derivative and to solve N*
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If there are 3 diseases, then we have 3*2000 +3000 = 9000 total individuals. So,
18000= 3N T+ N~
N~ =18000-3N"

If there are 10 diseases, then we have 10*2000 +3000 = 23000 total individuals. So,
46000= 1IO0NT+N~
N~ =46000—10N*



