EMMAX is a statistical test for large scale human or model organism association mapping accounting for the sample structure. In addition to the computational efficiency obtained by EMMA algorithm, EMMAX takes advantage of the fact that each loci explains only a small fraction of complex traits, which allows us to avoid repetitive variance component estimation procedure, resulting in a significant amount of increase in computational time of association mapping using mixed model.

The current implementation of EMMAX is under beta status and is available for download. Note that the current version provides only 64-bit linux binaries compatible with GLIBC 2.4. The official release should be available any time soon. If you have you any further question, please feel free to contact Hyun Min Kang. Until the official release, the latest source code is available only upon request.

This research was supported by National Science Foundation grants 0513612, 0731455 and 0729049, and National Institutes of Health (NIH) grants 1K25HL080079 and U01-DA024417. N.A.Z. is supported by the Microsoft Research Fellowship. H.M.K. is supported by the Samsung Scholarship, National Human Genome Research Institute grant HG00521401, National Institute for Mental Health grant NH084698 and GlaxoSmithKline. C.S. is partially supported by NIH grants GM053275-14, HL087679-01, P30 1MH083268, 5PL1NS062410-03, 5UL1DE019580-03 and 5RL1MH083268-03. N.B.F. and S.K.S. are supported by NIH grants HL087679-03, 5PL1NS062410-03, 5UL1DE019580-03 and 5RL1MH083268-03. This research was supported in part by the University of California, Los Angeles subcontract of contract N01-ES-45530 from the National Toxicology Program and National Institute of Environmental Health Sciences to Perlegen Sciences.